
School voor Informatietechnologie
Kennistechnologie, Informatica, Wiskunde, ICT

Uncertainty management in trajectory databases

Proefschrift voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen, richting Informatica
te verdedigen door

Walied Othman

Promotor: Prof. dr. Bart Kuijpers

19 mei 2009

Preface

This thesis would not be if not for the support of a number of people.
If I were listing the people in order of contribution, my supervisor prof.

dr. Bart Kuijpers, would be leading by a wide margin. He is a supervisor
like no other and went above and beyond in shaping the past four years that
cumulated into this thesis.

I would also like to thank prof. dr. Harvey J. Miller, with whom I spent a
six month research visit that led to many interesting results and insights, not
only on a professional level.

This research has been partially funded by the tUl-impulse programme,
the European Union under the FP6-IST-FET programme, Project n. FP6-
14915, GeoPKDD: Geographic Privacy-Aware Knowledge Discovery and De-
livery, and by the Research Foundation Flanders (FWO-Vlaanderen), Re-
search Project G.0344.05. The latter also funded my research visit to the
University of Utah and I thank them all for their support.

I spent the past four years in an office which I shared with Goele Hollanders,
and I was lucky she is such a pleasant person to spend my weekdays with.
I got to know Bart Moelans, Rafael Grimson and Wouter Gelade, all eager
people to share their scientific enthusiasm, even beyond the realm of computer
science. I also want to thank the Theoretical Computer Science Group of
Hasselt University for the stimulating atmosphere they created.

Finally, my gratitude goes out to my parents and sisters for their undying
support and faith in me, and to Bart Dendas, for all these years of not cutting
the rope.

Diepenbeek, May 2009

i

Contents

Preface i

1 Introduction 1

1.1 Speed and space-time prisms 1
1.2 Complete query languages . 2

1.3 Quantifier elimination and the alibi query 4
1.4 Space-time prisms on road networks 6

1.5 Space-time prisms and uncertain anchors 7

2 Definitions and preliminaries 9
2.1 Trajectories and trajectory samples 9

2.1.1 Definitions and basic properties 9
2.1.2 Speed of a trajectory . 11

2.2 A model for trajectory databases and queries 11
2.2.1 Trajectory and trajectory-sample databases and queries 11

2.3 Uncertainty via space-time prisms 13
2.3.1 Basic properties of space-time prisms 14

2.4 Road networks . 16

3 Complete query languages for trajectory databases 19

3.1 Trajectory transformations . 19
3.1.1 Transformations of trajectories 19

3.1.2 Transformations of space-time prisms 24
3.2 Complete query languages for trajectory databases 27

3.2.1 V-equivalent trajectory databases and V-invariant queries 27
3.2.2 First-order queries on trajectory (sample) databases . . 28

3.2.3 A point-based first-order language for trajectory (sam-
ple) databases . 30

3.2.4 Computationally complete query language for trajectory
(sample) databases . 38

3.3 Concluding remarks . 48

iii

iv CONTENTS

4 The alibi query 49

4.1 The alibi query in dimension one 49

4.1.1 The alibi query for movement on a line 49

4.2 The alibi query in dimension two 54

4.2.1 The alibi query . 54

4.2.2 The parametric alibi query 56

4.2.3 FO(Before,minSpeed, S)-expression of the alibi query . . 57

4.2.4 The geometry of space-time prisms 58

4.2.5 An analytic solution to the alibi query 62

4.2.6 Experiments . 77

4.2.7 The alibi query at a fixed moment in time 78

4.3 Conclusion . 85

5 Space-time prisms on road networks 87

5.1 Space-time prisms on road networks 88

5.2 Properties of space-time prisms on road networks 91

5.2.1 Computing and visualizing space-time prisms on road
networks . 93

5.2.2 Implementation and illustration 96

5.2.3 Complexity considerations 97

5.3 The Alibi Query . 99

5.3.1 The alibi query on road networks 99

5.3.2 Complexity considerations 100

5.4 Visualizing the intersection of two space-time prisms 101

5.5 Example Queries . 102

5.6 Conclusion and Future Work 105

6 Uncertain space-time prisms 107

6.1 Anchor uncertainty and uncertain space-time prisms 107

6.1.1 Uncertain anchors . 108

6.1.2 Uncertain space-time prisms 109

6.2 Computing the envelope of the uncertain prism 110

6.3 Measuring spatio-temporal uncertainty 112

6.3.1 Algorithms . 114

6.4 Applications . 123

6.4.1 Measuring flexibility . 123

6.4.2 Measurement errors and space-time prisms 124

6.5 Conclusions and future work 125

7 Conclusion 127

CONTENTS v

8 Publications 131

Bibliography 133

Samenvatting 137
8.1 Snelheid en space-time prisms 137
8.2 Volledige querytalen . 139
8.3 Kwantoreliminatie en de alibi query 140
8.4 Space-time prisms op wegennetwerken 141
8.5 Space-time prisms en onzekere ankerpunten 142

1
Introduction

This thesis intersects several fields. We touch topics in Constraint Database
Theory, Geographical Information Science (GIS) and even applications in
Time Geography. The common denominator in these fields are moving ob-
ject databases (MODs).

Nowadays more and more devices, like cell phones and GPS devices, are
equipped with location aware technology (LAT). These devices, on people,
vehicles or animals, produce trajectories. There are two types of trajectory
data. Firstly, we have trajectories, which are curves in the real plane R2 that
are parameterized by time. Secondly, we consider trajectory samples, which
are well known in MODs, and which are finite sequences of time-space points
(i.e., finite sequences of elements of R × R2). A trajectory database contains
a finite number of trajectories or trajectory samples that are labelled with an
identifier.

1.1 Speed and space-time prisms

The first quantity that describes an object’s movement, or the lack thereof, is
speed. Its mere definition is that speed quantifies the rate at which an object
changes position over time, which is why speed and speed limits are central in
this thesis.

There are various ways to reconstruct trajectories from trajectory samples,
of which linear interpolation between consecutive sample points is the most
popular in the literature(see page 85 of [11]). However, linear interpolation

1

2 Introduction

relies on the assumption that between sample points, a moving object moves
at constant minimal speed. This assumption is realistic when sample points
are frequent and occur at regular time intervals. It is more realistic to assume
that moving objects have some upper bound on their speed, be it physically
determined or by law such as on road networks. Given such upper bounds,
an uncertainty model has been proposed which constructs space-time prisms
between two consecutive time-space points in a trajectory sample. Basic prop-
erties of this model were discussed a few years ago in the GIS community by
Pfoser and Jensen [26], Egenhofer and Hornsby [4, 5] and Miller [21], but
space-time prisms were already known in the time-geography of Hägerstrand
in the early 1970s [13].

If the movement of a moving object is not constrained in any direction,
then a space-time prism is the intersection of two cones (one pointing upward
in time and one downward in time) in time-space and all possible trajectories
of the moving object between the two consecutive time-space points, given the
speed bound, are located within the space-time prism. Egenhofer calls the
chain of space-time prisms connecting consecutive trajectory sample points a
lifeline necklace [4]. Figure 1.1 illustrates the concepts of space-time prism
and lifeline necklace. Space-time prisms manage uncertainty more efficiently
than other approaches based on cylinders, as proposed by Wolfson [33] (by a
factor of three).

1.2 Complete query languages

Speed is not only important in obtaining good uncertainty models, but also
many relevant queries on trajectory data involve physical properties of trajec-
tories of which speed is the most relevant. Geerts proposed a model which
works explicitely with the equations of motion of the moving objects, rather
than with samples of trajectories, and in which the velocity of a moving object
is directly available and used [9]. If we are interested in querying about speed,
it is important to know which transformations of the time-space, modelled by
R × R2, preserve the speed of a moving object. We characterise this group
V of transformations as the combinations of affinities of time with orthogonal
transformations of space composed with spatial scalings (that uses the same
scale factor as the temporal affinity) and translations. Geerts et al. [10], dis-
cuss transformations that leave the velocity vector invariant, but starting from
spatial transformation that are a function of time alone. Our result holds in
general, for arbitrary smooth transformations of time-space. In Chapter 3,
we also show that the group V contains precisely the transformations that
preserve space-time prisms. So, the queries that involve speed are invariant

1.2. Complete query languages 3

����

����

��
��
��
��

��
��
��
��

t

x

y

Figure 1.1: An example of a space-time prism (left) and a lifeline necklace
(right).

under transformations of V, as are queries that speak about uncertainty in
term of space-time prisms. Therefore, if we are interested in querying about
speed and dealing with uncertainty via space-time prisms, it is advisable to
use a query language that expresses queries invariant under transformations
of V. Space-time prisms have been studied before in the context of modeling
uncertainty [4, 5, 21, 26], but have not been considered in the context of query
languages before.

As a starting point to query trajectory (sample) databases, we take a
two-sorted logic based on first-order logic over the real numbers (i.e., the
relational calculus extended with polynomial constraints) in which we have
trajectory-label variables and real variables. First-order logic over the real
numbers has been studied well in the context of Constraint Databases [25].
This logic is expressive enough to talk about speed and space-time prisms. We
remark that the V-invariant queries form an undecidable class, and we show
that this fragment of the above mentioned two-sorted logic is captured by a
three-sorted logic, with trajectory-label variables, time-space point variables

4 Introduction

and speed variables (modelled by positive real numbers), that uses two very
simple predicates: Before(p, q) and minSpeed(p, q, v). For time-space points
p and q, the former expresses that the time-component of p is smaller than
that of q. The latter predicate expresses that the minimal constant speed to
travel from p to q is v. This logic also allows polynomial constraints on speed
variables. We show that using these two, conceptually intuitive, predicates, all
the V-invariant first-order queries can be expressed. This language allows the
expression of all queries concerning speed on trajectory data and all queries
concerning uncertainty in terms of space-time prisms on trajectory samples. In
particular, a predicate inBead(r, p, q, v) can be defined in this logic, expressing
that r is in the space-time prism of p and q with maximal speed v.

We also show that a programming language, based on this three-sorted
logic, in which relations can be created and which has a while-loop with first-
order stop conditions, is sound and complete for the computable V-invariant
queries on trajectory (sample) databases. The proofs of these sound and com-
pleteness results are inspired by earlier work on complete languages for spa-
tial [12] and spatio-temporal databases [10]. Compared to the language pro-
posed by Geerts et al. [10], the language we propose is far more user oriented
since it is not based on geometric but speed-related predicates.

1.3 Quantifier elimination and the alibi query

A query of particular interest that has been studied by Egenhofer and Miller [4,
5, 21], is the alibi query. This boolean query asks whether two moving objects,
that are given by samples of time-space points and speed limitations, could
have physically met. This question adds up to deciding whether the lifeline
necklaces of space-time prisms of these moving objects intersect or not. This
problem can be considered solved in practice, when we can efficiently decide
whether two space-time prisms intersect or not.

Although approximate solutions to this problem have been proposed [4],
also an exact solution is possible. We show that the alibi query can be for-
mulated in the constraint database model by means of a first-order constraint
database query [17, 25]. It is well-known that first-order constraint queries
can be effectively evaluated and there exist implementations of quantifier-
elimination algorithms for first-order logic over the real numbers that can be
used to evaluate queries, see Chapter 2 of [25]. Experiments with software
packages such as QEPCAD [15], RedLog [30] and Mathematica [32] on a
variety of space-time prisms show that deciding whether two concrete space-
time prisms intersect can be computed on average in 2 minutes (running Win-
dows XP Pro, SP2, with a Intel Pentium M, 1.73GHz, 1GB RAM). This means

1.3. Quantifier elimination and the alibi query 5

that evaluating the alibi query on the lifeline necklaces of two moving objects
that each consist of 100 space-time prisms would take, if we test intersection of
space-time prisms in the two necklaces pairwise, around 100×100×2 minutes,
which is almost two weeks. If we would first check whether the time domains
of the space-time prisms in the two necklaces overlap, we could reduce the
computation time to (100+100)×2 minutes, or almost 7 hours. Clearly, both
amounts of time are unacceptable from a practical point of view.

Another solution within the range of constraint databases is to find a for-
mula, in which the coordinates of the apexes and limit speeds of two space-time
prisms appear as parameters, that parametrically expresses that two space-
time prisms intersect. We call this problem the parametric alibi query. A
quantifier-free formula for this parametric version could, in theory, also be ob-
tained by eliminating one block of three existential quantifiers using existing
quantifier-elimination software packages. We have attempted this approach
using Mathematica and QEPCAD, but after several days of running (with
the above processor), we have interrupted the computation, without successful
outcome. It is known that these implementations fail on complicated, higher-
dimensional problems. The benefit of having a quantifier-free first-order for-
mula that expresses whether two space-time prisms intersect is that the alibi
query on two space-time prisms can be answered in constant time. The prob-
lem of deciding whether two lifeline necklaces intersect can then be done in
time proportional to the sum of the lengths of the two necklaces of space-time
prisms (if we first check if the time domains of the prisms overlap).

The main contribution of Chapter 4 is the description of an analytic so-
lution to the alibi query in isotropic two-dimensional space, thus we pro-
vide a solution to a problem that has been open since 2001 at least. We
give a quantifier-free formula, that contains square roots and that expresses
the (non)emptiness of the intersection of two parametrically given space-time
prisms. Although, in a strict sense, this formula cannot be seen as quantifier-
free first-order formula (due to the roots), it still gives the above mentioned
complexity benefits. Moreover, we provide a procedure to effectively remove
the roots. At the basis of our solution is a geometric theorem that describes
three exclusive cases in which space-time prisms can intersect. These three
cases can then be transformed into an analytic solution that can be used to
answer the alibi query on the lifeline necklaces consisting of 100 space-time
prisms each in less than a minute. This provides a practical solution to the
alibi query.

6 Introduction

1.4 Space-time prisms on road networks

In Chapter 5, we study moving objects and space-time prisms on road net-
works. Early adaptations of the space-time prism model to road networks were
proposed by Miller [20, 22], where they introduced concepts like the network
time prism and potential path tree. The first depicts all possibly visited edges
and vertices in a road network, whereas the latter is a subtree of the first.

We view road networks as a graph embedding in R2 where all edges are
embedded as straight lines between vertices. All edges have a (strictly positive)
speed limit as well an associated weight, called their time span, which is equal
to the time needed to get from one end of the edge to the other when travelling
at the speed limit.

Again, a moving object is given as a finite sample of time-space points
(ti, xi, yi) where i = 1, . . . , N , with (xi, yi) on the road network. It is possible
that also an object dependent speed limit vi at (xi, yi) is given, but we basically
work with the speed limits of the road network (to cope with the former case,
we simply set a uniform speed limit vi on the road network to construct the
space-time prism between sample times ti and ti+1).

The first problem we address is the computation and visualization of a
space-time prism between two sample points on a road network, respecting the
speed limits of the road network as well as the visualization of the spatial and
temporal projection of such a space-time prism. The above mentioned time
span is the key to our computation of space-time prisms on road networks.
Shortest-path length in a road network is called road network time and is
fact the shortest time to get from one point to another on the road network.
If a uniform speed limit is given on the road network, road network time
corresponds to shortest path distance along the road network. The algorithms
that we give to compute and visualize space-time prisms and their spatial
projection is based on single-source shortest path algorithms such as Dijkstra’s
algorithm [3]. The complexity of our algorithm is quadratic in terms of a small
subset of vertices in the road network. Our algorithm for the computation of a
space-time prism returns a polygonal representation in space as well as time-
space. For the purpose of experiments and illustration, we implement these
algorithms in Mathematica [24].

Using this polygon representation of space-time prisms, we also developed
an algorithm to decide the alibi query on road networks. This comes down
to deciding whether the lifeline necklaces of two moving objects intersect or
not. This problem is efficiently solved once we have an efficient way to decide
whether two space-time prisms have a non-empty intersection or not. First, we
develop an algorithm that decides this for moving objects moving on a straight
line. In fact this algorithm is given as a first-order formula that can be applied

1.5. Space-time prisms and uncertain anchors 7

in constant time. Next we use our solution to the alibi query on a straight
line to solve this query on a road network. Evaluating the alibi query turns
out to be easy and fast (quadratic time in the number of vertices captured
by both space-time prisms) once both space-time prisms have been computed.
Our algorithm also computes where and when two moving objects may have
met, i.e., it computes the space and time projection of the intersection of the
necklaces.

1.5 Space-time prisms and uncertain anchors

Up to this point space-time prisms were assumed to connect two anchors,
which are time-space points. These anchors are treated as if they are exact
data. The one advantage the cylinder model has over space-time prisms, is
that incorporates several types of errors and not just interpolation errors.
In Chapter 6 we drop the assumption that the anchors are points, and we
generalise them from sample points to sample regions.

The main reason for doing so is that the sample points are never perfect
measurements. While they can be highly accurate using devices that are
equipped with a GPS receiver (even then the accuracy is up to a meter or
more), they can also be highly inaccurate, as is the case with location data
provided by cell towers. In this latter case, the uncertainty of a location can
stretch out for a few miles and if we intersect this pie-shaped region (one third
of a disk) with a road network, we end up with possible discontinuities in space,
the error on the time-stamp of this measurement is negligible in this case. A
third and final scenario, that reveals the shortcomings of a perfect data model,
occurs when people are asked to retain diaries of locations and time-stamps,
e.g., “I left work between 5 and 5:30 P.M.” or “I was near the shopping mall
around 8:30 A.M.”. These cases show uncertainty about anchors both in space
and time. Moreover, the latter case shows that these sample regions need not
be fluently connected in time, if the shopping mall opens at 8:30 A.M., then
the moving object could not be inside the mall before 8:30 A.M., but it could
be after 8:30 A.M., whereas the object could be anywhere outside the mall
before and after 8:30 A.M..

Sample regions model all the scenarios mentioned above. Sample regions
are finite sets of box-shaped regions in space-time on top of a road network.
To model the different scenarios we not only allow these regions to be not
fluently connected but even disconnected, and on top of this we assume in-
dependent probability functions in time and space defined on sample regions.
For example, a uniform distribution assumes all locations and time moments
are equally probably, a normal distribution differentiates in the likelihood of

8 Introduction

points.
In Chapter 6 we introduce, aside from sample regions, the envelope of

an uncertain space-time prism, which contains all space-time prisms with an
anchor in a starting region and one in an ending region. We also define the
emanating fraction of a spatio-temporal point with respect to the starting
regions, which is the integral of the probability functions over the subset of
the starting regions from which we are able to reach this spatio-temporal
point. Likewise we define the absorbing fraction of a spatio-temporal point
with respect to the ending regions, which is the integral of the probability
functions over the subset of the ending regions which we are able to reach from
this spatio-temporal point. The combined fraction of a spatio-temporal point
with respect to travel from the starting regions to the ending regions is then
the product of its emanating fraction with its absorbing fraction. Furthermore,
we provide algorithms to compute the structure of these concepts and visualise
the envelope of an uncertain space-time prism and the emanating, absorbing
and combined fraction for all time-space points inside the envelope.

2
Definitions and preliminaries

2.1 Trajectories and trajectory samples

2.1.1 Definitions and basic properties

Let R denote the set of the real numbers. We restrict1 ourselves to movement
in the real plane R2. Time-space space will be denoted by R×R2, where the
first dimension represents time and the latter two represent space. Typically,
we will use t as a variable that ranges over time points and x, y as variables
that range over spatial coordinates2.

Definition 2.1. Let I ⊆ R be an interval. A trajectory T is the graph of a
piecewise-smooth3 (with respect to t) mapping

α : I ⊆ R → R2 : t 7→ α(t) = (αx(t), αy(t)),

i.e., T = {(t, αx(t), αy(t)) ∈ R × R2 | t ∈ I}. The set I is called the time
domain of T .

1We remark that most definitions and results in this thesis can be generalized to higher
dimensions in a straightforward way. For ease of exposition, we restrict ourselves to two
dimensions, which is the case relevant for geographic information system applications [4, 5,
21, 26].

2So, we have (t, x, y)-tuples in the space R × R
2. Strictly speaking, we should write

R × R × R or simply R
3, but we prefer the notation R × R

2 to stress the distinction
between time and space.

3Smooth is here used in the terminology of differential geometry [23], meaning differen-
tiable or C1.

9

10 Definitions and preliminaries

Often, in the literature, conditions are imposed on the nature of the map-
pings αx and αy. For instance, they may be assumed to be piecewise lin-
ear (see Chapter 3 of [11]), differentiable or even C∞ [31]. For reasons
of finite representability, we may, for instance, assume that I is a (possi-
bly unbounded) interval in R with rational end points and that αx and αy

are semi-algebraic functions (i.e., they are given by a combination of polyno-
mial inequalities in x and t and y and t respectively). For example, the set
{(

t, 1−t2

1+t2
, 2t

1+t2

)

| 0 ≤ t ≤ 1
}

describes a trajectory on the quarter of the unit

circle located in the first quadrant. In this example, αx may be given by the
formula x(1 + t2) = 1 − t2 ∧ 0 ≤ t ≤ 1 and αy may be given by the formula
x(1 + t2) = 2t ∧ 0 ≤ t ≤ 1.

In practice, trajectories are only known at discrete moments in time, con-
sider measurements from GPS-equipped devices. This partial knowledge of
trajectories is formalized in the following definition. If we want to stress that
some t, x, y-values (or other values) are constants, we will use sans serif char-
acters.

Definition 2.2. A trajectory sample is a finite set of time-space points {(t0,
x0, y0), (t1, x1, y1), ..., (tN , xN , yN)}, on which the order on time, t0 < t1 < · · · <
tN , induces a natural order.

For practical purposes, we may assume that the (ti, xi, yi)-tuples of a tra-
jectory sample contain rational values.

Definition 2.3. Let S = {(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)} be a trajec-
tory sample and let T = {(t, αx(t), αy(t)) ∈ R × R2 | t ∈ I} be a trajectory.
We say that the trajectory T is consistent with the sample S, if t0, t1, ..., tN ∈ I
and αx(ti) = xi, αy(ti) = yi for i = 0, ..., N .

A classical model to reconstruct a trajectory from a sample is the linear-
interpolation model (see Chapter 3 of [11]), where the unique trajectory,
that is consistent with the sample and that is obtained by assuming that the
trajectory is run through at constant lowest speed between any two consecutive
sample points, is constructed.

Definition 2.4. For a sample S = {(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)},
the trajectory LIT (S) :=

N−1
⋃

i=0

{(

t,
(ti+1 − t)xi + (t− ti)xi+1

ti+1 − ti
,
(ti+1 − t)yi + (t− ti)yi+1

ti+1 − ti

)

| ti ≤ t ≤ ti+1

}

is called the linear-interpolation trajectory of S.

The functions describing the x- and y-coordinates are everywhere differen-
tiable except possibly at the moments t0, t1, . . . , tN .

2.2. A model for trajectory databases and queries 11

2.1.2 Speed of a trajectory

Definition 2.5. Let T = {(t, αx(t), αy(t)) ∈ R × R2 | t ∈ I} be a trajectory.
If αx and αy are differentiable in t̃ ∈ I, then the velocity vector of T in t̃ is
defined as

(

1,
dαx

dt

(

t̃
)

,
dαy

dt

(

t̃
)

)

and the length of the projection of this vector on the (x, y)-plane is called the
speed of T in t̃.

Let S = {(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)} be a sample. Then for any

t, with ti < t < ti+1, the velocity vector of LIT (S) in t is
(

1, xi+1−xi

ti+1−ti
, yi+1−yi

ti+1−ti

)

and the corresponding speed is
√

(xi+1 − xi)2 + (yi+1 − yi)2/(ti+1 − ti), which
corresponds to the minimal speed at which this distance between (xi, yi) and
(xi+1, yi+1) can be covered. At the moments t0, t1, ..., tN the velocity vector
and speed of LIT (S) may not be defined.

2.2 A model for trajectory databases and queries

2.2.1 Trajectory and trajectory-sample databases and queries

We assume the existence of an infinite set Labels = {a, b, ..., a1, b1, ..., a2, b2, ...}
of trajectory labels. We now define the notion of trajectory (sample) database.

Definition 2.6. A trajectory relation R is a finite set of tuples (ai,Ti),
i = 1, ..., r, where ai ∈ Labels can appear only once and where Ti is a tra-
jectory. Similarly, a trajectory sample relation R is a finite set of tuples
(ai, ti,j , xi,j, yi,j), with i = 1, ..., r and j = 0, ..., Ni, such that ai ∈ Labels

cannot appear twice in combination with the same t-value and such that
{(ti,0, xi,0, yi,0), (ti,1, xi,1, yi,1), ..., (ti,Ni

, xi,Ni
, yi,Ni

)} is a trajectory sample.

A trajectory (sample) database is a finite collection {R1, R2, ..., RM} of
trajectory (sample) relations.

Without loss of generality, we will assume in the sequel that a database
consists of one relation and when we refer to the database we will refer to its
relation.

In Section 2.1, we discuss how we finitely represent trajectories and tra-
jectory samples. We will use the same representation model for trajectory
relations and trajectory sample relations.

The following is an example of a trajectory relation containing three tra-
jectories.

12 Definitions and preliminaries

label t x y

a 0 ≤ t ≤ 1 1 = x(t2 + 1) t = y(t2 + 1)
b 0 ≤ t ≤ 1 1 − t2 = x(t2 + 1) 2t = y(t2 + 1)
c 1 ≤ t ≤ 2 1 2

The second trajectory, b, describes a movement on a segment of a circle. The
third, c, is a stationary trajectory in the point (1, 2).

The following is an example of trajectory sample relation.

label t x y

a 0 0 0
a 1 0 1
a 2 0 2
a 3 0 3
b 0 0 0
b 1 1 0
b 2 2 0
b 3 3 0
c 0 0 0
c 1

2 0 0
c 1 0 0
c 3

2 0 0

It contains samples of objects with labels a, b and c between time moments
0 and 3. The object a is moving over the y-axis at uniform speed, the object
b is moving over the x-axis at uniform speed and the object c that remains
stationary in the origin.

Now, we define the notion of a trajectory database query. We distinguish
between trajectory database transformations and boolean trajectory queries.

Definition 2.7. A (sample-)trajectory database transformation is a partial
computable function from (sample-)trajectory relations to (sample-)trajectory
relations. A boolean (sample-)trajectory database query is a partial computable
function from (sample-)trajectory relations to {0, 1}.

When we say that a function is computable, this is with respect to some
fixed encoding of the trajectory (sample) relations (e.g., rational polynomial
functions represented in dense or sparse encoding of polynomials; or rational
numbers represented as pairs of natural numbers in bit representation).

2.3. Uncertainty via space-time prisms 13

2.3 Uncertainty via space-time prisms

In 1999, Pfoser and Jensen [26] introduced the notion of space-time prisms
in the moving object database literature to model uncertainty. Space-time
prisms were later studied by Egenhofer and Hornsby [5, 4] and Miller [21].
Before Wolfson used cylinders to model uncertainty [11, 33].

Let S be a sample {(t0, x0, y0), (t1, x1, y1), . . . , (tN , xN , yN)}. More formally,
the cylinder approach to managing uncertainty, depends on an uncertainty
threshold value ε > 0 and gives a buffer of radius ε around LIT (S). In
elementary geometry, we can define this set as {(t, x, y) ∈ R × R2 | t0 ≤ t ≤
tN ∧ ∃x′∃y′(x′, y′) ∈ LIT (S) ∧ (x− x′)2 + (y − y′)2 ≤ ε2}.

Often, in practical applications, more is known about trajectories than
merely some sample points (ti, xi, yi). For instance, background knowledge
like a physically or law imposed speed limitation vi at location (xi, yi) might
be available. Such a speed limit might even depend on ti. The speed limits
that hold between two consecutive sample points can be used to model the
uncertainty of a moving object’s location between sample points.

More specifically, we know that at a time t, ti ≤ t ≤ ti+1, the object’s
distance to (xi, yi) is at most vi(t − ti) and its distance to (xi+1, yi+1) is at
most vi(ti+1 − t). The spatial location of the object is therefore somewhere
in the intersection of the disc with center (xi, yi) and radius vi(t− ti) and the
disc with center (xi+1, yi+1) and radius vi(ti+1 − t). The geometric location of
these points is referred to as a space-time prism [26, 4] and defined, for general
points (ti, xi, yi) and (ti+1, xi+1, yi+1) and speed limit vi as follows.

Definition 2.8. Let vi ∈ R+ and (ti, xi, yi), (ti+1, xi+1, yi+1) ∈ R × R2, with
ti < ti+1 and vi ≥ 0 be given. The space-time prism of (ti, xi, yi, ti+1, xi+1, yi+1,
vi), denoted P(ti, xi, yi, ti+1, xi+1, yi+1, vi), is the set of points (t, x, y) ∈ R×R2

satisfying the following constraints:

ti ≤ t ≤ ti+1

(x− xi)
2 + (y − yi)

2 ≤ (t− ti)
2v2

i

(x− xi+1)
2 + (y − yi+1)

2 ≤ (ti+1 − t)2v2
i .

We call the set given by the constraints ti ≤ t and (x− xi)
2 + (y − yi)

2 ≤
(t − ti)

2v2
i the bottom cone of the space-time prism and the set given by the

constraints t ≤ ti+1 and (x−xi+1)
2+(y−yi+1)

2 ≤ (ti+1−t)2v2
i the upper cone of

the space-time prism. The apices of the cones, (ti, xi, yi) and (ti+1, xi+1, yi+1),
are sometimes also referred to as anchors of the space-time prism. The axis
of these cones is parallel to the t-axis. Clearly, the space-time prism is the
intersection of its bottom and upper cone.

14 Definitions and preliminaries

Figure 2.1 illustrates a space-time prism with vi = 1. For this space-time
prism, the slope of the two cones is determined by the value of vi and in this
case it is 45◦.

(ti+1, xi+1, yi+1)

(ti, xi, yi) (ti, xi, yi)

(ti+1, xi+1, yi+1)

x

y

t

Figure 2.1: An example of a space-time prism P(ti, xi, yi, ti+1, xi+1, yi+1, vi).

2.3.1 Basic properties of space-time prisms

We give some basic properties of space-time prisms.

Definition 2.9. For a sample S = {(t0, x0, y0), (t1, x1, y1), . . . , (tN , xN , yN)}
the set

⋃N−1
i=0 P(ti, xi, yi, ti+1, xi+1, yi+1, vi) is called the space-time prism chain.

Egenhofer calls these space-time prism chains lifeline necklaces [4].
The space-time prism P(ti, xi, yi, ti+1, xi+1, yi+1, vi) is the intersection of

two cones with slope determined by vi. At each moment t, with ti ≤ t ≤ ti+1,
the intersection of the space-time prism with the plane at moment t, parallel
to the (x, y)-plane is a an intersection of two disks, which is a disk or a lens.
At a fixed moment in time t, this disk or lens is given by the constraints

{

(x− xi)
2 + (y − yi)

2 ≤ (t− ti)
2v2

i

(x− xi+1)
2 + (y − yi+1)

2 ≤ (ti+1 − t)2v2
i .

The case of a lens is illustrated in Figure 2.2.

There are obviously a number of special or degenerate cases that are dis-
cussed in the following property, which follows immediately from the above
remarks.

Property 1. Let (ti, xi, yi), (ti+1, xi+1, yi+1) be time-space points with ti <
ti+1 and let vi ≥ 0. Then we have

2.3. Uncertainty via space-time prisms 15

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

(xi, yi)

vi(ti+1 − t)
vi(t − ti)

(xi+1, yi+1)

Figure 2.2: An example of a lens in a space-time prism P(ti, xi, yi, ti+1, xi+1,
yi+1, vi) at moment t, with t1 ≤ t ≤ ti+1.

1. Let di =
√

(xi − xi+1)2 + (yi − yi+1)2. At any moment t between ti and
ti+ti+1

2 − di

2vi
the space-time prism shows a disk with center (xi, yi) and

radius vi(t− ti). At any moment between
ti+ti+1

2 − di

2vi
and

ti+ti+1

2 + di

2vi

the space-time prism is a lens and between ti+ti+1

2 + di

2vi
and ti+1 it shows

a disk with center (xi+1, yi+1) and radius vi(ti+1 − ti);

2. di > vi(ti+1 − ti) if and only if P(ti, xi, yi, ti+1, xi+1, yi+1, vi) is empty;

3. if vi = di

ti+1−ti
, then P(ti, xi, yi, ti+1, xi+1, yi+1, vi) is a line segment in the

(t, x, y)-space that is not parallel to the (x, y)-plane;

4. the space-time prism P(ti, xi, yi, ti+1, xi+1, yi+1, vi) is at no moment be-
tween ti and ti+1 a lens (i.e., it is always a disk) if and only if (xi, yi) =
(xi+1, yi+1) and vi ≥ 0. In this case, P(ti, xi, yi, ti+1, xi+1, yi+1, vi) is the
union of two cones, one with apex (ti, xi, yi), one with apez (ti+1, xi, yi)

and both with the disk with center (xi, yi) and radius vi

(

ti+1+ti
2

)

at
ti+1+ti

2 as base.

The proof of this property is pretty straightforward and is therefor omitted.
Case (4) of this property is illustrated by the space-time prism on the top right
in Figure 1.1.

The following two properties can be proven quite easily in an analytical
way. We omit the proofs.

Property 2. Given time-space points (ti, xi, yi), (ti+1, xi+1, yi+1), with ti <
ti+1 and vi ≥ 0, the projection of the space-time prism P(ti, xi, yi, ti+1, xi+1,
yi+1, vi) onto the (x, y)-plane is the area bordered by the ellipse with foci

16 Definitions and preliminaries

(xi, yi) and (xi+1, yi+1) and with long axis vi(ti+1−ti)
2 . The equation of this

ellipse is

(2x− xi − xi+1)
2

v2(ti+1 − ti)2
+

(2y − yi − yi+1)
2

v2(ti+1 − ti)2 − (xi − xi+1)2 − (yi − yi+1)2
= 1.

We denote the area bounded by the ellipse from the previous property by
πx,y(P(ti, xi, yi, ti+1, xi+1, yi+1, vi)).

Property 3. Given (ti, xi, yi), (ti+1, xi+1, yi+1), with ti < ti+1 and vi ≥ 0,
then any trajectory from (ti, xi, yi) to (ti+1, xi+1, yi+1) for which the speed at
any moment ti ≤ t ≤ ti+1 is less than vmax is located within P(ti, xi, yi, ti+1,
xi+1, yi+1, vi) and the projection of such a trajectory on the (x, y)-plane is
located within πx,y(P(ti, xi, yi, ti+1, xi+1, yi+1, vi)). Furthermore, for any point
(t, x, y) in P(ti, xi, yi, ti+1, xi+1, yi+1, vi) there exists a trajectory from (ti, xi, yi)
to (ti+1, xi+1, yi+1) that passes through (t, x, y).

Proof. The first part of the property is trivial. For the second part, we remark
that the trajectory LIT ({(ti, xi, yi), (t, x, y), (ti+1, xi+1, yi+1}) can be taken.

Since (t, x, y) is inside the space-time prism P(ti, xi, yi, ti+1, xi+1, yi+1, vi),
which is convex, the entire line segment connecting (ti, xi, yi) and (t, x, y) is in-
side the prism. At time t we have that

√

(x − xi)2 + (y − yi)2 ≤ vi(t− ti), that
means that a moving object’s speed along the trajectory LIT ({(ti, xi, yi), (t, x,
y)}) satisfies

√

(x − xi)2 + (y − yi)2

(t − ti)
≤ vi

and the entire trajectory is a valid trajectory inside the space-time prism.

Likewise, the entire line segment connecting (t, x, y) and (ti+1, xi+1, yi+1)
is inside the prism. At time t we have that

√

(xi+1 − x)2 + (yi+1 − y)2 ≤
vi(ti+1 − t), that means that a moving object’s speed along the trajectory
LIT ({(t, x, y), (ti+1, xi+1, yi+1)}) satisfies

√

(xi+1 − x)2 + (yi+1 − y)2

(ti+1 − t)
≤ vi

and the entire trajectory is a valid trajectory inside the space-time prism.

2.4 Road networks

Here we define road networks and trajectories on road networks.

2.4. Road networks 17

Definition 2.10. A road network RN is a graph embedding in R2 of a labelled
graph given by a finite set of vertices V = {(xi, yi) ∈ R2 | i = 1, . . . , N} and
a set of edges E ⊆ V × V that are labelled by a speed limit and an associated
time span. This graph embedding satisfies the following conditions. Vertices
are embedded on themselves and edges are embedded as straight line segments
between vertices.4 If an edge between (xi, yi) and (xj , yj) is labeled by the

speed limit vij > 0, then its time span wij is

√
(xi−xj)2+(yi−yj)2

vij
, i.e., it is the

time needed to get from one side of an edge to another when travelling at the
speed limit.

So, we have RN =

{(x, y) = (1 − λ)(xi, yi) + λ(xj , yj) | λ ∈ [0, 1] and ((xi, yi), (xj , yj)) ∈ E} ∪ V.

-1

0

1

X

-1

0

1

Y

0

1

2

3

T

Figure 2.3: A trajectory in space-time and its projection on a road network.

A trajectory can be anything continuous, be it a polyline or something
more differentiable. We assume trajectories are recorded as a discrete list
of time-stamped locations, called sample points, and that nothing is known

4These edge embeddings may intersect. So, we can model bridges and tunnels in our
model.

18 Definitions and preliminaries

about an object’s position between those sample points other than an upper
bound on its speed.

Definition 2.11. Let T is a trajectory given by the functions αx and αy. T is
a trajectory on a road network if it satisfies (αx(t), αy(t)) ∈ RN for all t in the
time domain of T and for a trajectory sample S = {(t0, x0, y0), (t1, x1, y1), ...,
(tN , xN , yN)} we must have (xi, yi) ∈ RN for all i = 0, . . . , N .

A trajectory (sample) on a road network RN is a trajectory (sample) whose
spatial projection is in RN, as illustrated in Figure 2.3. Figure 2.3 shows a
road network and a trajectory, as well as a sample that is consistent with
the trajectory, on top of it. The spatial projections of the trajectory and the
trajectory sample are also shown.

3
Complete query languages for
trajectory databases

In this chapter, we focus on the trajectories that are produced by moving
objects and on managing and querying them in a database. We can summarize
the results of this chapter as follows: we give a data model for trajectory
data; an efficient way of modeling uncertainty; we study transformations for
which important physical properties of trajectories are invariant and we give
first-order complete and computationally complete query languages for queries
invariant under these transformations.

We remark that the completeness and soundness results presented in this
chapter hold for arbitrary time-space data, but we present them for trajectory
(sample) data for which the space-time prism model is specifically designed.
In any case, in all the presented languages it is expressible that an output
relation is a trajectory (sample) relation.

3.1 Trajectory transformations

3.1.1 Transformations of trajectories

Now, we study transformations of trajectories under bijective mappings

f : R× R2 → R× R2 : (t, x, y) 7→ (ft(t, x, y), fx(t, x, y), fy(t, x, y)).

Since we are interested in transformations that preserve the speed of trajec-
tories at all moments in time, we assume, in the spirit of differential geome-

19

20 Complete query languages for trajectory databases

try [23], that the transformations f : R×R2 → R×R2 are (globally) smooth.
We will call globally smooth bijective mappings of R×R2 transformations for
short.

We further assume that f preserves the uni-directional nature of time and
the temporal order of events.

An event is a subset of R × R2. The projection of an event A on the
time-axis is denoted by πt(A) and called the time-domain of A.

Let A and B be events. In the terminology of Allen’s interval calculus [1, 2],
A and B are called co-temporal if πt(A) = πt(B), we denote this by A =t B.
According to Allen, A is before B if tA < tB for all tA ∈ πt(A) and all
tB ∈ πt(B), we denote this by A <t B.

Remark that A ≤t B := (A =t B or A <t B) is a pre-order on events.

Definition 3.1. We say that a transformation f : R×R2 → R×R2 preserves
the order of events if for all events A and B, A =t B implies f(A) =t f(B)
and A <t B implies f(A) <t f(B).

It is easy to show the following property (for a proof see [6]).

Property 4. A transformation f = (ft, fx, fy) : R×R2 → R×R2 : (t, x, y) 7→
(ft(t, x, y), fx(t, x, y), fy(t, x, y)) preserves the order of events if and only if ft

is a strictly monotone increasing bijection of t alone.

Proof. This means that f preserves temporal relations between time-space
points. If two time-space points p and q are co-temporal, then f(p) and f(q)
will also be co-temporal. And if the time-space point p precedes the time-space
point q in time, then f(p) will also precede f(q) in time. This is equivalent to
the assumption that ft is a a monotone increasing function of time alone, i.e.,
that (t, x, y) 7→ ft(t) [10].

If ft is a strictly monotone function of time alone, then f obviously pre-
serves the order of events. And if f preserves the order of events then clearly
ft is a function of time alone, because any two co-temporal points p and q
must be mapped to points that are co-temporal, that implies ft can not be de-
pendant on its spatial coordinates. Also, the fact that for any two time-space
points p and q, tp < tq implies that ft(p) < ft(q) means per definition that ft

is strictly monotone increasing.

Assuming the above restrictions on f , from now on we shall therefore write
ft : R → R : t 7→ ft(t).

Property 5. Let T be a trajectory. If f is as above and ft is a strictly
monotone increasing function of t where f ′t(t) > 0 for all t, then f(T) is also
a trajectory.

3.1. Trajectory transformations 21

Proof. Let T = {(t, αx(t), αy(t)) | t ∈ I} be a trajectory and f = (ft, fx, fy) :
R×R2 → R×R2 be a function with ft a monotone increasing function of t and
f ′t(t) > 0 for all t. First, we observe that ft satisfies all the conditions of the
inverse function theorem, this guarantees that f−1

t exists and is differentiable.
We have

f(T) = {(ft(t), fx(t, αx(t), αy(t)) , fx(t, αx(t), αy(t))) | t ∈ I}
and if we write τ = ft(t), then we get f(T) = {(τ, fx(f−1

t (τ), αx(f−1
t (τ)),

αy(f
−1
t (τ))), fy(f

−1
t (τ), αx(f−1

t (τ)), αy(f
−1
t (τ)))) | τ ∈ ft(I)}. Since ft is a

diffeomorphism of R, ft(I) is also an interval in R. It is clear that fx(f−1
t (τ),

αx(f−1
t (τ)), αy(f

−1
t (τ))) and fx(f−1

t (τ), αx(f−1
t (τ)), αy(f

−1
t (τ))) are functions

that are defined on this interval and that they are differentiable in all points
where αx and αy are differentiable.

We note that the speed vector of a trajectory in time-space always has
its first component equal to one. If the condition f ′t(t) > 0 is omitted, then
the image of a trajectory has a speed vector with its first component equal to
zero in points where f ′t(t) = 0, in this case the image of a trajectory does not
satisfy the definition of a trajectory anymore.

We remark that the restriction concerning finite representability of trajec-
tories that we have given after Definition 2.1, might not be fulfilled for f(T)
for some f . For the moment we do not worry about this. For the relevant f ,
that we will identify in Theorem 3.2, this problem vanishes.

We remark that the fact that ft is a monotone increasing function of t
alone, can be expressed as by the conditions: ∂ft

∂x
= 0, ∂ft

∂y
= 0 and ∂ft

∂t
> 0.

If f : R ×R2 → R× R2 is as above, then the matrix

df =

∂ft

∂t
0 0

∂fx

∂t
∂fx

∂x
∂fx

∂y
∂fy

∂t

∂fy

∂x

∂fy

∂y

is called the total derivative of f (or tangent map of f , see Chapter 4 of [23]).
This is in each time-space point a linear transformation of R×R2 that, when
applied to a trajectory, describes how the velocity vector is transformed.

Theorem 3.2. A function

f : R × R2 → R × R2 : (t, x, y) 7→ (ft(t, x, y), fx(t, x, y), fy(t, x, y))

preserves at all moments the speed of trajectories and preserves the order of
events if and only if f is of the form

f (t, x, y) = a ·

1 0 0
0 a11 a12

0 a21 a22

t
x
y

+

b

b1

b2

 ,

22 Complete query languages for trajectory databases

with a, b, b1, b2 ∈ R, a > 0, and the matrix

(

a11 a12

a21 a22

)

∈ R2×2 defining an

orthogonal transformation (i.e., its inverse is its transposed).

We denote the group of the transformations of R × R2 identified in this
theorem by V.

Proof of Theorem 3.2. Let f : (t, x, y) 7→ (ft (t, x, y) , fx (t, x, y) , fy (t, x, y))
be a transformation as in the statement of the theorem. As remarked before,
we have ∂ft

∂x
= 0, ∂ft

∂y
= 0 and ∂ft

∂t
> 0, which means that ft is a reparameteri-

zation of time and that f can be simplified to

f : (t, x, y) 7−→ (ft (t) , fx (t, x, y) , fy (t, x, y)) .

Consider a trajectory T = {(t, αx(t), αy(t)) ∈ R × R2 | t ∈ I}. For the
purpose of this proof it suffices to consider trajectories for which I = R and for
which αx and αy are everywhere differentiable. The trajectory T will be trans-
formed to a trajectory f(T) given by β : R → R2 : τ 7→ (βx (τ) , βy (τ)), where
τ = ft (t) or t = f−1

t (τ) and βx(τ) = fx(f
−1
t (τ), αx(f−1

t (τ)), αy(f
−1
t (τ))) and

βy(τ) = fy(f
−1
t (τ), αx(f−1

t (τ)), αy(f
−1
t (τ))), as remarked in the proof of Prop-

erty 5.
We assume that f preserves, at all moments in time, the speed of trajec-

tories, which means that
∥

∥

∥

∥

(

1,
∂αx (t)

∂t
,
∂αy (t)

∂t

)∥

∥

∥

∥

=

∥

∥

∥

∥

(

1,
∂βx(τ)

∂τ
,
∂βy(τ)

∂τ

)∥

∥

∥

∥

.

Let ᾱ and β̄ be the mappings

ᾱ : t 7→ (t, αx(t), αy(t)) and β̄ : τ 7→ (τ, βx(τ), βy(τ)).

Since (f ◦ ᾱ)(t) is equal to β̄(τ), we have that the derivative1 (f ◦ ᾱ)′(t) should

be equal to ∂β̄(τ)
∂t

.

Since (f ◦ ᾱ)′ (t) = dfᾱ(t) ◦ ᾱ′ (t) and ∂β̄(τ)
∂t

= β̄′ (τ) · ∂τ(t)
∂t

= β̄′ (τ) ·f ′t (t), we
have dfᾱ(t) ◦ ᾱ′ (t) = β̄′ (τ) ·f ′t (t). Since f ′t(t) > 0 for all t and we can therefore

write
(

1
f ′

t(t)
· dfᾱ(t)

)

◦ ᾱ′ (t) = β̄′ (τ) and conclude that 1
f ′

t(t)
· df(t,x,y) must be

an isometry of R× R2 for each (t, x, y).

Let A be the matrix associated to the linear mapping 1
f ′

t(t)
· df(t,x,y), i.e., A

is

1

f ′t (t)
·

∂ft

∂t
0 0

∂fx

∂t
∂fx

∂x
∂fx

∂y
∂fy

∂t

∂fy

∂x

∂fy

∂y

.

1If f is a function of single variable t, we write f ′ instead of df

dt
.

3.1. Trajectory transformations 23

Since this linear transformation must be orthogonal, we have that A · AT =
AT ·A = I and therefore det (A) = ±1. These conditions lead to the following
equations. Firstly,

∂ft

∂t
∂fx

∂t

(f ′t (t))2
= 0,

which means ∂fx

∂t
= 0, because ∂ft

∂t
> 0. Similarly, we have that

∂fy

∂t
= 0.

Secondly, we have
(

∂fx

∂x

)2
+
(

∂fx

∂y

)2

(f ′t (t))2
= 1

or

(

∂fx

∂x

)2

+

(

∂fx

∂y

)2

=
(

f ′t (t)
)2
.

We remark that the right-hand side is time-dependent and the left-hand side is
not, and vice versa the left-hand side is dependent on only spatial coordinates
and the right-hand side is not, which means both sides must be constant.
This implies that ft (t) = at + b where a > 0 since ft is assumed to be

an increasing function. The condition
(

∂fx

∂x

)2
+
(

∂fx

∂y

)2
= a2 is known as

a differential equation of light rays or the eiconal equation [27], and has the
solution fx(x, y) = a11x + a12y + b1, where a2

11 + a2
12 = a2 and where b1 is

arbitrary. Completely analogue, we have
(

∂fy

∂y

)2
+
(

∂fy

∂x

)2
= (f ′t (t))2 which

leads to fy (x, y) = a21x + a22y + b2 where a2
21 + a2

22 = a2 and where b2 is
arbitrary.

Thirdly,
(

∂fx

∂x

∂fy

∂x
+

∂fy

∂y
∂fx

∂y

)

(f ′t (t))2
= 0.

And finally, det (A) = ±1 gives a11a22 − a12a21 = ±1.
If we write a′ij =

aij

a
, then we all these equations lead to the following form

of f :

f : R × R2 → R ×R2 : (t, x, y) 7→ a ·

1 0 0
0 a′11 a′12
0 a′11 a′22

t
x
y

+

b

b1

b2

where a > 0, and

(

a′11 a′12
a′11 a′22

)

is an orthogonal transformation of the plane.

It is also clear that transformations of the above form preserve at any
moment the speed of trajectories. This completes the proof.

24 Complete query languages for trajectory databases

Examples of speed-preserving transformations include the spatial trans-
lations and rotations, temporal translations and scalings of the time-space
space.

The previous result generalizes a result from [10, 6], where the same
conclusion was derived, not starting from a general smooth transformation
f : R×R2 → R×R2, but rather from time-dependent and space-independent
affinities of R× R2.

3.1.2 Transformations of space-time prisms

Suppose we transform a space-time prism P(ti, xi, yi, ti+1, xi+1, yi+1, vi) by a
function f : R×R2 → R×R2 : (t, x, y) 7→ (ft(t), fx(t, x, y), fy(t, x, y)), where
we assume f to be a globally smooth bijection (called transformation, as be-
fore) and ft to be strictly monotone increasing, as we have done earlier in
Section 3.1.1 for trajectories. We ask ourselves which class of transformations
map space-time prisms to space-time prisms. Also here we assume transforma-
tions to be smooth and bijective. Before answering this we give the following
technical lemma.

Lemma 3.3. Let f : R → R : t 7→ f(t) be a smooth function. If f is
strictly monotone increasing and if for any s, t ∈ R, we have that 2 · f(s+t

2) =
f(s) + f(t), then f(t) = (f(1) − f(0)) · t+ f(0).

Proof. Suppose f is a smooth function for which for any s, t ∈ R, we have
that f(s+t

2) = 1
2(f(s) + f(t)). If we take the derivative on both sides in the

variable t, we get

∂

∂t
f

(

s+ t

2

)

=
∂

∂t

f (s) + f (t)

2
or f ′

(

s+ t

2

)

· ∂
∂t

(

t

2

)

=
f ′ (t)

2

and thus f ′
(

s+t
2

)

= f ′ (t) for all t, which means f ′ (t) is constant and f (t) =
at+ b. Since f is assumed to be strictly monotone increasing, we must have
a > 0. Clearly, f(0) = b and f(1) = a + b = a + f(0).

Theorem 3.4. Let f : R×R2 → R×R2 : (t, x, y) 7→ (ft(t), fx(t, x, y), fy(t, x,
y)) be a transformation that preserves the order of events. Then for arbitrary
time-space points (ti, xi, yi) and (ti+1, xi+1, yi+1) with ti < ti+1 and arbitrary
vi ≥ 0, f(P(ti, xi, yi, ti+1, xi+1, yi+1, vi)) is also a space-time prism if and only
if f is of the form

f (t, x, y) =

a 0 0
0 ca11 ca12

0 ca21 ca22

t
x
y

+

b

b1

b2

 ,

3.1. Trajectory transformations 25

with a, b, c, b1, b2 ∈ R, a, c > 0, and the matrix

(

a11 a12

a21 a22

)

∈ R2×2 defining

an orthogonal transformation of R2. Furthermore, if these conditions are
satisfied, then

f(P(ti, xi, yi, ti+1, xi+1, yi+1, vi)) = P(f(ti, xi, yi), f(ti+1, xi+1, yi+1), cvi/a).

Proof of Theorem 3.4. Let

f : R × R2 → R× R2 : (t, x, y) 7−→ (ft (t) , fx (t, x, y) , fy (t, x, y))

be a transformation that preserves the order of events. Suppose that for any
space-time prism P = P(ti, xi, yi, ti+1, xi+1, yi+1, vi), f(P) is again a space-time
prism.

Let us first consider the special case,

vi =

√

(xi+1 − xi)
2 + (yi+1 − yi)

2

(ti+1 − ti)
,

i.e., the maximal speed is also the minimal speed. Then the space-time prism
P is the straight line segment between (ti, xi, yi) and (ti+1, xi+1, yi+1) in the
(t, x, y)-space. This segment is not parallel to the (x, y)-plane (like all space-
time prisms that are lines). Since P is one-dimensional and since f(P) is
assumed to be a space-time prism and since f(P) at any moment consists
of one point also f(P) must be a straight line segment not parallel to the
(x, y)-plane in the in the (t, x, y)-space. We can conclude that f maps any line
segment not parallel to the (x, y)-plane to a line segment not parallel to the
(x, y)-plane.

Secondly, let us consider a space-time prism P with (xi, yi) = (xi+1, yi+1)
and vi > 0. This space-time prism consists of a cone between ti and ti+ti+1

2
with top (ti, xi, yi) and base the disk

D =

{

(

ti + ti+1

2
, x, y

)

| (x− xi)
2 + (y − yi)

2 ≤ v2
i

(

ti+1 − ti

2

)2
}

on the one hand and a cone between ti+ti+1

2 and ti+1 with top (ti+1, xi, yi)
and the same disk D as base, on the other hand. Consider the straight line
segments emanating from the top (ti, xi, yi) and ending in some point of the
central disk D. They are mapped to straight line segments in f(P) (as we
have argued before) that emanate from the top f (ti, xi, yi) of f(P) and that

end up in some figure f(D) in the hyperplane t = ft

(

ti+ti+1

2

)

. Since f(P) is

assumed to be a space-time prism, the image of the bottom cone of P is again

26 Complete query languages for trajectory databases

a cone, and the aforementioned figure f(D) in the hyperplane t = ft

(

ti+ti+1

2

)

is also a closed disk. The same holds for the top cone of P. This half of P
is mapped to a cone with top f(ti+1, xi+1, yi+1) and base f(D). Therefore,
f(P) is the union of two cones, one with top f (ti, xi, yi), the other with top
f(ti+1, xi, yi) and both with base f(D). Since f(P) is a space-time prism that
at no moment in time is a lens, it must, by Property 1, itself be a space-time
prism with equally located tops. This means that fx(ti, xi, yi) = fx(ti+1, xi, yi)
and fy(ti, xi, yi) = fy(ti+1, xi, yi). In other words, the functions fx and fy are

independent of t. This argument also shows that ft

(

ti+ti+1

2

)

is the middle

of ft(ti) and ft(ti+1). This means that for any ti and ti+1, ft

(

ti+ti+1

2

)

=
1
2(ft(ti) + ft(ti+1)). By Lemma 3.3, ft(t) = at+ b with a > 0.

So, we have shown that a space-time prism-preserving transformation f is
of the form f (t, x, y) = (at+ b, fx (x, y) , fy (x, y)) . Now we determine fx and
fy. If we restrict ourselves to a (x, y)-plane at some moment t between ti and
ti+1 (ti < ti+1), the space-time prism P = P(ti, xi, yi, ti+1, xi, yi, vi) shows a
disk. Since f(P) is again a space-time prism, it will also show a disk at ft(t).
Since fx and fy are independent of t, they map disks to disks, hence distances
between points are all scaled by a positive factor c by this transformation. To
determine what fx and fy look like we can restrict ourselves to a mapping from
R2 to R2, since fx and fy depend only on x and y. Consider the transforma-
tion f̃ (x, y) = (fx (x, y) , fy (x, y)), we know now that for all points (ux, uy)

and (wx, wy) in R2, ‖(ux, uy) − (wx, wy)‖ = 1
c

∥

∥

∥
f̃ (ux, uy) − f̃ (wx, wy)

∥

∥

∥
. Now

consider f̂ = 1
c
f̃ , this means ‖(ux, uy) − (wx, wy)‖ =

∥

∥

∥
f̂ (ux, uy) − f̂ (wx, wy)

∥

∥

∥

and thus f̂ is an isometry. Just like before, cfr. Theorem 3.2, we can conclude
that f̃ (x, y) = (fx (x, y) , fy (x, y)) is a similarity of the plane, i.e. composed
of a linear isometry, a scaling and a translation of the plane.

If P is a space-time prism between the points (ti, xi, yi) and (ti+1, xi+1, yi+1)
and speed vi, then f(P) = P ′ is a space-time prism between the points
(t′i, x

′
i, y

′
i) and

(

t′i+1, x
′
i+1, y

′
i+1

)

and speed v′i = c.vi

a
, because we know that

{

(x′ − x′i)
2 + (y′ − y′i)

2 = c2
(

(x− xi)
2 + (y − yi)

2
)

(t′ − t′i)
2 = a2 (t− ti)

2

has to hold for all space-time prisms, hence all vi since degenerate space-time
prisms must be transformed to degenerate space-time prisms.

This concludes the proof since it is clear that all transformations of this
form also map space-time prisms to space-time prisms.

From this results it follows that if f maps a space-time prism P with

3.2. Complete query languages for trajectory databases 27

maximal speed vi to a space-time prism f(P), the latter has maximal speed
cvi

a
. Therefore, we can conclude the following.

Corollary 3.5. If f : R × R2 → R × R2 is a transformation that preserves
the order of events, then f maps space-time prisms to space-time prisms with
the same speed, if and only if, f preserves the speed of trajectories (i.e., f
belongs to V defined in Theorem 3.2).

Proof. Using the notation of Theorem 3.4 it follows that if f maps a space-
time prism P with maximal speed vi to another space-time prism and that
f(P) has maximal speed cvi

a
, where c is the spatial scaling factor of f and a

is its temporal scaling factor. Therefore, vi = cvi

a
if and only if a = c. In this

case, f is a speed-preserving transformation by Theorem 3.2.

3.2 Complete query languages for trajectory
databases

3.2.1 V-equivalent trajectory databases and V-invariant queries

Definition 3.6. Let R and S be trajectory (sample) databases. We say that
R and S are V-equivalent, if there is bijection µ : Labels → Labels and a
speed-preserving transformation f ∈ V such that (µ× f)(R) = S.

In this chapter, we are especially interested in transformations and queries
that are invariant under elements of V.

Definition 3.7. A trajectory (sample) database transformation Q is V -
invariant if for any trajectory (sample) databases R and S which are V-
equivalent, i.e., for which there is a bijection µ : Labels → Labels and a
transformation f ∈ V such that (µ× f)(R) = S, also (µ× f)(Q(R)) = Q(S).

A boolean trajectory (sample) database query Q is V-invariant if for
any trajectory (sample) databases R and S, for which are V-equivalent, also
Q(R) = Q(S).

The FO(+,×, <, 0, 1, S)-sentence

∃a∃b(¬(a = b) ∧ ∀t∀x∀y)(S(a, t, x, y) ↔ S(b, t, x, y))), (†)

for example, expresses the boolean trajectory query that says that there are
two identical trajectories in the input database with different labels.

As another example, the FO(+,×, <, 0, 1, S)-sentence

∃a∃t1∃x1∃y1∃t2∃x2∃y2(S(a, t1, x1, y1) ∧ S(a, t2, x2, y2) ∧

28 Complete query languages for trajectory databases

(x1 − x2)
2 + (y1 − y2)

2 > 102(t2 − t1)
2)

expresses the boolean trajectory query that says that there is a trajectory that
at some interval has an average speed higher than 10.

The FO(+,×, <, 0, 1, S)-formula

S(a, t, x, y) ∧ t ≥ 0 (∗)

has free variables a, t, x and y and returns the subtrajectories of the input
trajectories at positive time moments.

Sentences in FO(+,×, <, 0, 1, S) (for example, the sentence (†)) express
Boolean queries.

Trajectory transformations can be expressed in FO(+,×, <, 0, 1, S) by for-
mulas ϕ(a, t, x, y) with four free variables (for example, the formula (∗)).

3.2.2 First-order queries on trajectory (sample) databases

A first query language for trajectory (sample) databases that we consider is
the following extension of first-order logic over the real numbers, which we
refer to as FO(+,×, <, 0, 1, S).

Definition 3.8. The language FO(+,×, <, 0, 1, S) is a two-sorted logic with
label variables a, b, c, ... (possibly with subscripts) that refer to trajectory la-
bels and real variables x, y, z, ... (possibly with subscripts) that refer to real
numbers. The atomic formulas of FO(+,×, <, 0, 1, S) are

• p(x1, ..., xn) > 0, where p is a polynomial with integer coefficients in the
real variables x1, ..., xn;

• a = b, where a and b are label variables; and

• S(a, t, x, y) (S is a 4-ary predicate).

The formulas of FO(+,×, <, 0, 1, S) are built from the atomic formulas us-
ing the logical connectives ∧,∨,¬, ... and quantification over the two types of
variables: ∃x, ∀x and ∃a, ∀a, etc.

When we instantiate the free variables in a FO(+,×, <, 0, 1, S)-formula
ϕ(a, b, ..., t, x, y, ...) by concrete values a, b, ..., t, x, y, ... we write ϕ[a, b, ..., t, x, y,
...] for the formula we obtain.

For what concerns the semantics of queries, expressed by FO(+,×, <, 0,
1, S)-formulas, when applied to some input trajectory (sample) database, we
observe the following. The label variables are assumed to range over the labels
occurring in the input database and the real variables are assumed to range

3.2. Complete query languages for trajectory databases 29

over R. The formula S(a, t, x, y) expresses that a tuple (a, t, x, y) belongs
to the input trajectory (sample) database, i.e., to the trajectory (sample)
relation. The interpretation of the other formulas is standard. The logic FO(+,
×, <, 0, 1, S) is a constraint database query language [28] (see also Chapter 2
of [25]). It is well known that FO(+,×, <, 0, 1, S)-expressible queries can be
evaluated effectively (see Chapter 2 of [25]).

We remark that not every FO(+,×, <, 0, 1, S)-formula ϕ(a, t, x, y) defines
a trajectory relation on input a trajectory. The formula

∃t′∃x′∃y′S(a, t′, x′, y′) ∧ t > 0 ∧ x > 0 ∧ y > 0

is an example of a formula that does not return a trajectory (sample).

However, it can be syntactically guaranteed that the output of such a
FO(+,×, <, 0, 1, S)-query is a trajectory (sample), since the property of being
a trajectory (sample) can be expressed in FO(+,×, <, 0, 1, S).

Property 6. There is an FO(+,×, <, 0, 1, S)-formula that expresses that a
set {(t, x, y) | ϕ(t, x, y)}, with ϕ(t, x, y) an FO(+,×, <, 0, 1, S)-formula, is a
trajectory (sample).

Proof of Property 6. It is well known that an FO(+,×, <, 0, 1, S)-definable set
{(t, x, y) | ϕ(t, x, y)}, is a semi-algebraic set (see Chapter 2 of [25]). It is
expressible in FO(+,×, <, 0, 1, S) that a semi-algebraic set is a function of
the form t 7→ (x(t), y(t)) and also that it is piecewise smooth. Indeed, differ-
entiability of a function in a point t0 can be first-order expressed using the
ε-δ-definition of differentiability [8, 7]. Piecewise smoothness is then expressed
by saying that the set of moments t where the function is not differentiable is
finite. Finiteness of a semi-algebraic set can be expressed by saying that all
the elements of the set are isolated points of the set (see Chapter 2 of [25]).
Therefore, it is FO(+,×, <, 0, 1, S)-expressible that {(t, x, y) | ϕ(t, x, y)} is a
trajectory.

To express that a set {(t, x, y) | ϕ(t, x, y)} is a trajectory sample, it suffices
to say that this set is finite and that for each t-value, there is at most one
accompanying (x, y)-value.

By combining a formula ϕ(a, t, x, y) with a guard that expresses that for
every label a in the output of ϕ(a, t, x, y), the corresponding (t, x, y) values
form a trajectory (sample), we can determine a closed or safe fragment of
FO(+,×, <, 0, 1, S) for transforming trajectories.

30 Complete query languages for trajectory databases

3.2.3 A point-based first-order language for trajectory (sam-
ple) databases

In this section, we consider a first-order query language, FO(Before,minSpeed,
S̃), for trajectory (sample) databases.

Definition 3.9. The language FO(Before,minSpeed, S̃) is a three-sorted logic
with

• label variables a, b, c, ... (possibly with subscripts), that refer to labels of
trajectories;

• point variables p, q, r, ... (possibly with subscripts), that refer to time-
space points (i.e., elements of R× R2);

• speed variables u, v,w, ... (possibly with subscripts), that refer to speed
values (i.e., elements of R+).

The atomic formulas of FO(Before,minSpeed, S̃) are

• p(v1, ..., vn) > 0, where p is a polynomial with integer coefficients in the
speed variables v1, ..., vn;

• a = b, where a and b are label variables; and

• S̃(a, p) (so, here S̃ is a binary predicate);

• Before(p, q), minSpeed(p, q, v).

The formulas of FO(Before,minSpeed, S̃) are built from the atomic formulas
using the logical connectives ∧,∨,¬, ... and quantification over the three types
of variables: ∃a, ∀a, ∃p, ∀p and ∃v, ∀v, etc.

The label variables are assumed to range over the labels occurring in the
input database, the point variables are assumed to range over the set of time-
space points R × R2 and the speed variables are assumed to range over the
positive real numbers, i.e., over R+.

If p is a time-space point, then we denote its time-component by tp and
its spatial coordinates with respect to the standard coordinate system by xp

and yp. The formula S(a, p) expresses that a tuple (a, tp, xp, yp) belongs to the
input database. The atomic formula Before(p, q) expresses that tp ≤ tq. The
atomic formula minSpeed(p, q, v) expresses that

(xp − xq)
2 + (yp − yq)

2 = v2(tp − tq)
2 ∧ ¬(tq ≤ tp),

3.2. Complete query languages for trajectory databases 31

in other words, that v is the minimal speed to go from the spatial projection
(xp, yp) of p to the spatial projection (xq, yq) of q in the time-interval [tp, tq]
that separates them.

For example, the FO(Before,minSpeed, S̃)-sentence

∃a∃b(¬(a = b) ∧ ∀p(S̃(a, p) ↔ S̃(b, p))) (†′)

equivalently expresses (†).
To define equivalence of (queries expressible by) formulas in the languages

FO(Before,minSpeed, S̃) and FO(+,×, <, 0, 1, S), we define the canonical map-
ping

can : p 7→ (tp, xp, yp).

Definition 3.10. If Ã is an instance of S̃, then (id × can)(Ã) is an instance
of S. We say that a formula ϕ̃(a, p) ∈ FO(Before,minSpeed, S̃) and a formula
ϕ(a, t, x, y) ∈ FO(+,×, <, 0, 1, S) express equivalent transformations if for any
Ã, the set (id × can)({(a, p) | Ã |= ϕ̃(a, p)}) is equal to the set {(a, t, x, y) |
(id× can)(Ã) |= ϕ(a, t, x, y)}.

We say that a sentence ϕ̃ ∈ FO(Before,minSpeed, S̃) and a sentence ϕ ∈
FO(+,×, <, 0, 1, S) express equivalent boolean queries if for any Ã, we have

Ã |= ϕ̃ if and only if (id× can)(Ã) |= ϕ.

For the formula (∗), there is no equivalent formula in FO(Before,minSpeed,
S̃). The reason for this is given by the following theorem in combination with
the observation that the formula (∗) does not express a V-invariant transfor-
mation.

Theorem 3.11. A V-invariant trajectory (sample) transformation or a V-
invariant boolean trajectory (sample) query is expressible in FO(+,×, <, 0, 1,
S) if and only if it is expressible in FO(Before,minSpeed, S̃).

Before giving the proof of Theorem 3.11, we introduce some more predi-
cates on time-space points and speed values, which will come in handy later
on:

• inPrism(r, p, q, v) expresses that r = (rt, rx, ry) belongs to the space-time
prism P(tp, xp, yp, tq, xq, yq, v), where p = (tp, xp, yp) and q = (tq, xq, yq)
(assuming that tp ≤ tq);

• Between2(p, r, q) expresses that the three co-temporal points p, q and r
are collinear and that r is strictly between p and q;

32 Complete query languages for trajectory databases

• Between1+2(p, r, q) expresses that the three points p, q and r are collinear
and that r is strictly between p and q;

• EqDist(p1, q1, p2, q2) expresses that the distance between the co-temporal
points p1 and q1 is equal to the the distance between the co-temporal
points p2 and q2;

• Middle(p, r, q) expresses that Between2(p, r, q) and that r lies in the mid-
dle between p and q;

• Perp(p1, q1, p2, q2) expresses that the vectors −−→p1q1 and −−→p2q2 of the co-
temporal points p1, q1, p2 and q2 are perpendicular.

We remark that a key predicate to simulate addition and multiplication in
FO(Before,minSpeed, S̃) is Between2 [12]. We now show that these predicates
belong to FO(Before,minSpeed, S̃).

Lemma 3.12. The expressions listed above: inPrism(r, p, q, v), Between2(p, q,
r), Between1+2(p, q, r), EqDist(p1, q1, p2, q2), Middle(p, r, q) and Perp(p1, q1, p2,
q2) can all be expressed in the logic FO(Before,minSpeed, S̃).

Proof of Lemma 3.12. First, we introduce some abbreviations, namely predi-
cates to denote co-spatiality and co-temporality:

• equality of the spatial coordinates, denoted =S (p, q), is expressed in
FO(Before,minSpeed, S̃) as

∃v(minSpeed(p, q, v) ∧ v = 0) ∨ p = q;

• co-temporality of time-space points, denoted =T (p, q) is expressed in
FO(Before,minSpeed, S̃) as

Before(p, q) ∧ Before(q, p).

Now we turn to the predicates in the statement of the lemma.

• For what concerns the predicate inPrism(r, p, q, v), we remark that the
point r lies in the space-time prism if and only if the line connecting p
and r is steeper than the edge of the bottom cone and the same is true
for the line connecting q and r and the top cone. This means that an
object traveling along a trajectory that is linearly interpolated between
p, r and q has speed less than v. Therefore, inPrism(r, p, q, v) is expressed
as

∃v1 (v1 ≤ v ∧ minSpeed(p, r, v1)) ∧ ∃v2 (v2 ≤ v ∧ minSpeed(r, q, v2)) ;

3.2. Complete query languages for trajectory databases 33

• The perdicate Between2(p, r, q) is expressed by the formula

=T(p, r) ∧ =T(r, q) ∧ ¬(p = r ∨ r = q ∨ p = q) ∧ ∃r′∃q′∃v(v > 0

∧ =S(r, r
′) ∧ =S(q, q

′) ∧ minSpeed(p, q′, v) ∧ minSpeed(p, r′, v)

∧ minSpeed(r′, q′, v) ∧ ¬Before(r′, p) ∧ ¬Before(q′, r′)).

Indeed, the first line states that the three points p, q and r are co-
temporal and distinct. Then we state that the points r′ and q′ have the
same spatial coordinates as r and q respectively, p, r′ and q′ are collinear,
and therefor p, r and q are as well. The last line simply states that r is
between p and q in a temporal sense.

This expression depicts a geometric situation as illustrated in Figure 3.1.
If there exists a line, not parallel to the spatial plane, through one of
the points, in this case p, and two parallel lines (the dotted lines in the
figure) through the other points, r and q, that intersect this line, then
the plane, defined by this line and the two parallel ones, cuts the spatial
plane (containing p, r and q) in a line containing these three points p, r
and q, and hence they are collinear.

To show that p, r′ and q′ are collinear, we assume for the sake of contra-
diction that they are not. That means d(p, q′) < d(p, r′) + d(r′, q′) due
to the triangle inequality. Thus, using Pythagoras’ theorem, we have

√

dS(p, q′)2 + (tq′ − tp)2 <
√

dS(p, r′)2 + (tr′ − tp)2 +
√

dS(r′, q′)2 + (tq′ − tr′)2

where dS denotes the spatial distance between the spatial projection of
its arguments.

Due to the minSpeed relations, we have dS(p, q′) = v(tq′ −tp), dS(p, r′) =
v(tr′ − tp) and dS(r′, q′) = v(tq′ − tr′). Substituting this in the inequality
above yields to

√

(v2 + 1)(tq′ − tp)2 <
√

(v2 + 1)(tr′ − tp)2 +
√

(v2 + 1)(tq′ − tr′)2,

which holds if and only if

√

(v2 + 1)(tq′ − tp) <
√

(v2 + 1)(tr′ − tp) +
√

(v2 + 1)(tq′ − tr′).

The latter condition holds if and only if (tq′ − tp) < (tr′ − tp)+ (tq′ − tr′)
or equivalently (tq′ − tp) < (tq′ − tp). Since this is impossible, p, r′ and
q′ must be collinear.

34 Complete query languages for trajectory databases

��
��
��
��

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����

y

p

r′

q′t

q

rx

Figure 3.1: The geometric construction of Between2.

• The predicate Between1+2 is more general than Between2, but the ex-
pression for this predicate is quite similar. We have Between1+2(p, r, q)
if and only if

Between2(p, r, q) ∨ (¬(p = r ∨ r = q ∨ p = q) ∧ ∃v(v > 0

minSpeed(p, q, v) ∧ minSpeed(p, r, v) ∧ minSpeed(r, q, v)

∧ ¬Before(r, p) ∧ ¬Before(q, r))).

The fact that the same speed v can be used to travel from p to q; from p
to r and from r to q, expresses that these three points must be collinear.

• We can write EqDist(p1, q1, p2, q2) as

∃p′1∃q′1∀r1∀r2∃v (v > 0 ∧ =T(p1, q1) ∧ =T(p2, q2) ∧
=S(p1, p

′
1) ∧ =T(p2, p

′
1) ∧ =S(q1, q

′
1) ∧ =T(q2, q

′
1) ∧

=T(r1, r2) ∧ =S(r1, q
′
1) ∧ =S(r2, q2) ∧

¬(Before(r1, q
′
1) ∨ Before(r2, q2))

∧ minSpeed(p2, r2, v) ∧ minSpeed(p′1, r1, v)).

The second and third line state that we are projecting p1 onto a point
p′1 with the same spatial coordinates as p1 and with the same time co-
ordinate as p2. The same holds for q1 and q2. Then we introduce any

3.2. Complete query languages for trajectory databases 35

two co-temporal points r1 and r2 with the same spatial but greater time
coordinates than q′1 and q2, respectively. And finally the last line states
that we can reach r1 and r2, which are spatially the same as q′1 and q2,
from p′1 and p2 with the same speed and in the same time frame. Hence
their distance must be equal.

• The expression Middle(p, r, q) is a little bit more specialized than Between2

(p, r, q) in the sense that r lies in the middle between p and q. We can
express Middle(p, r, q) as

Between2(p, r, q) ∧ ∀r′∃v (v > 0 ∧ =S(r, r
′) ∧ Before(r, r′) ∧

¬=T(r, r′) ∧ minSpeed(p, r′, v) ∧ minSpeed(p, r′, v)).

This expresses that r can be reached from p and q with the same speed
and in the same time-frame. This means the distance from p to r is
equal to the distance from q to r.

• Finally, we have Perp(p1, q1, p2, q2). We can express Perp(p1, q1, p2, q2) as

∃r∃p′1∃q′1 ((Between2(p1, q1, r) ∨ Between2(p1, r, q1) ∨
Between2(r, p1, q1)) ∧ (Between2(p2, q2, r) ∨ Between2(p2, r, q2)

∨ Between2(r, p2, q2)) ∧ Middle(p′1, r, p1) ∧ Middle(q′1, r, q1) ∧
EqDist(p1, p2, p

′
1, p2) ∧ EqDist(q1, p2, q

′
1, p2) ∧

EqDist(p1, q2, p
′
1, q2) ∧ EqDist(q1, q2, q

′
1, q2)).

First, we state that r is the point of intersection of the straight lines
going through p1 and q1 and through p2 and q2. Then we say that p′1 is
a point on the line through the point p1 and q1 such that r is the middle
of the segment bound by p1 and p′1. The point q′1 is defined similarly.
Finally, we express that the line through p2 and q2 is the perpendicular
bisector of the segment bound by p1 and p′1 and the segment bound by
q1 and q′1. Hence the vectors −−→p1q1 and −−→p2q2 are perpendicular.

For the purpose of the proof of Theorem 3.11, we need to generalise Defi-
nition 3.7, of V-invariance of queries expressed by FO(Before,minSpeed, S̃)-for-
mulas.

Definition 3.13. A FO(Before,minSpeed, S̃)-formula ϕ(a1, ..., an, p1, ..., pm,
v1, ..., vk) expresses a V-invariant query Q if for any trajectory (sample) data-
bases R and S for which there is a bijection µ : Labels → Labels and a trans-
formation f ∈ V such that (µ × f)(R) = S, also

(

µn × fm × idk
)

(Q(R)) =
Q(S).

36 Complete query languages for trajectory databases

This definition corresponds to Definition 3.7 for transformations and boolean
queries, if we take n = m = 1, k = 0 and n = m = k = 0, respectively.

Definition 3.14. We say that a query language is sound for the V-invariant
FO(+,×, <, 0, 1, S)-queries, if all queries are V-invariant and expressible in
FO(+,×, <, 0, 1, S).

We say that a query language is complete for the V-invariant FO(+,×, <,
0, 1, S)-queries, if all V-invariant queries of FO(+,×, <, 0, 1, S) are expressible
in that language.

Now, we are ready for the proof of Theorem 3.11.

Proof of Theorem 3.11. We have to prove soundness and completeness.

Soundness. Firstly, we show that every FO(Before,minSpeed, S̃)-formula is
equivalently expressible in FO(+,×, <, 0, 1, S) and that every query expressible
in FO(Before,minSpeed, S̃) is V-invariant.

We assume prenex normal form for FO(Before,minSpeed, S̃)-formulas, and
translate the atomic formulas first. Logical connectives, and finally quanti-
fiers, can then be added in a straightforward manner. A label variable is left
unchanged. A point variable p is simulated by three real variables tp, xp and
yp that represent the real coordinates of p with respect to the standard coor-
dinate system of R×R2. A speed variable v is simulated by a real variable v
and when it appears it is accompanied with the restriction v ≥ 0.

An appearance of the trajectory predicate S̃(a, p) is translated into S(a, tp,
xp, yp). By switching to coordinate representations, the predicates minSpeed(p,
q, v) and Before(p, q) are translated to (xp − xq)

2 +(yp − yq)
2 = v2 (tp − tq)

2 ∧
tp < tq and tp ≤ tq respectively. Polynomial constraints on speed variables are
literally translated (adding v ≥ 0). Logical connectives, and finally quantifiers,
can then be added in a straightforward manner. In particular, ∃p is translated
to ∃tp∃xp∃yp.

Speed-preserving transformations preserve the order of events. That im-
plies that the predicate Before is V-invariant. The predicate minSpeed is
also V-invariant. To see this take any f that belongs to V, then we know
from Theorem 3.2 that f is the composition of a scaling by a positive fac-
tor a and an orthogonal transformation and a translation. Suppose that
f(tp, xp, yp) = (p′t, p

′
x, p

′
y) = p′ and f(tq, xq, yq) = (q′t, q

′
x, q

′
y) = q′. Now if

minSpeed(p′, q′, v) holds, then (p′x − q′x)
2 + (p′y − q′y)

2 = v2(p′t − q′t)
2. Be-

cause (p′x − q′x)2 + (p′y − q′y)
2 = a2((xp − xq)

2 + (yp − yq)
2) and v2(p′t − q′t)

2

= v2a2(tp − tq)
2, we have a2((xp − xq)

2 + (yp − yq)
2) = v2a2(tp − tq)

2 or
(xp − xq)

2 + (yp − yq)
2 = v2(tp − tq)

2. The inequality tp < tq holds if and only
if atp = p′t < atq = q′t since a > 0. In other words, minSpeed(p, q, v) holds if
and only if minSpeed(p′, q′, v) holds.

3.2. Complete query languages for trajectory databases 37

The polynomial constraints on speed variables are by definition V-invariant
(see Definition 3.13), because we apply the identity on them. Now, it is easy
to show, by induction on the syntactic structure of FO(Before,minSpeed, S̃)-
formulas that they are all V-invariant.

Completeness. Secondly, we show that every V-invariant trajectory transfor-
mation and boolean query, expressible in FO(+,×, <, 0, 1, S), can equivalently
be expressed in FO(Before,minSpeed, S̃).

Since the general strategy of the proof follows the lines of Gyssens et al.
[12] and Geerts et al. [6], we will sketch the proof, as a rigorous proof easily
becomes long and tedious. The general strategy that we outline is based on
proof strategies introduced in [12] for spatial data and later developed for
time-space data in [10]. The details for the current setting can be easily
reconstructed using the proofs in [10, 12] and the outline below.

Label variables are left unchanged in the translation. The real variables
are translated into point variables and we simulate addition, multiplication
and order on real values, on these point variables in a “computation plane”.
We explain this now in detail.

To simulate addition, multiplication and order, we need a coordinate sys-
tem for R×R2 that is the image of the standard coordinate system of R×R2

under some element of V. Let (u0, u1, u2, u3) be such a coordinate system,
meaning u0, u2 and u3 are co-temporal, −−→u0u1,

−−→u0u2 and −−→u0u3 are perpendicu-
lar and have equal length and u0 is a point before u1. All of this is expressible
in FO(Before,minSpeed, S̃) with the predicates introduced in Lemma 3.12. In-
deed, the formula

∃v(=T(u0, u2) ∧ =T(u0, u3) ∧ =S(u0, u1) ∧ ¬u0 = u2 ∧
EqDist(u0, u2, u0, u3) ∧ Perp(u0, u2, u0, u3) ∧ v = 1 ∧ minSpeed(u2, u1, v))

expresses that (u0, u1, u2, u3) is such a coordinate system. When traveling
from u1 to u2 with speed 1, the elapsed time equals the elapsed space. There-
for, the distance between u0 and u2 equals the distance between u0 and u1.
Let CoSys(u0, u1, u2, u3) abbreviate this FO(Before,minSpeed, S̃)-formula that
expresses that (u0, u1, u2, u3) is the image of the standard coordinate system
under some speed-preserving transformation.

As a next step in the translation, all real variables are directly translated
into point variables on the line u0u2. The idea is to translate a real variable
x to a point variable px, where the cross ratio (u0, u2, p

x) corresponds to the
real value x.

It is obvious that the order relation can be simulated using Between2. But
Tarski showed that we can construct point based predicates that simulate
addition and multiplication using only Between2 [29] (see also [12]). Moreover,

38 Complete query languages for trajectory databases

these simulations occur in the plane spanned by the co-temporal points u0, u2

and u3 (hence the term computation plane).

At this point, we have in our translated formula too many free variables.
First of all, there is the coordinate system we have chosen to represent the
time-space points in. Secondly, we have translated variables, which represent
coordinates, to point variables. But we need to group triples of coordinates,
all points that are on the line u0u2, in time-space points of which they are
the coordinates. More precisely, we also introduce true time-space points.
And we want to be able to express that three time-space points, located on
the line through u0 and u2, represent the coordinates of a given time-space
point. This can be done with a predicate Coordinates(u0, u1, u2, u3, t, x, y, u)
which expresses that the cross ratios (u0, u2, t), (u0, u2, x) and (u0, u2, y) are
the coordinates for the point variable u with respect to the coordinate system
(u0, u1, u2, u3). The predicate Coordinates can be expressed using only the
predicate Between1+2 as was shown in [12].

The relation S is translated in a similar straightforward manner: whenever
S(a, t, x, y) appears, we translate it by S̃(a, p) and an expression that states
that the points tp, xp and yp on u0u2 are the coordinates of p.

Finally, we add existential quantifiers for all the coordinate point variables
and for the points u0, u1, u2 and u3.

A corollary of Theorem 3.11 and Property 7, is the following.

Property 7. There is a FO(Before,minSpeed, S̃)-formula that expresses that
S̃ is a trajectory (sample).

3.2.4 Computationally complete query language for trajectory
(sample) databases

In this section, we consider computationally complete query languages for
trajectory (sample) databases. For the sake of the better understanding of the
proof of Theorem 3.18, we start with showing the computational completeness
of the programming language FO(+,×, <, 0, 1, S)+while, which, apart from the
use of label variables, is described in Chapter 2 of [25]. We define this language
here in the presence of label variables.

3.2.4.1 The language FO(+,×, <, 0, 1, S)+while

We assume that in the language FO(+,×, <, 0, 1, S)+while, we have a suffi-
cient supply of relation variables (of all arities). In this language, we have
assignment statements and while-loops.

More formally, FO(+,×, <, 0, 1, S)+while is defined as follows.

3.2. Complete query languages for trajectory databases 39

Definition 3.15. A program in FO(+,×, <, 0, 1, S)+while is a finite sequence
of assignment statements and while-loops:

1. An assignment statement is of the form

R := {(a1,, ak , x1, . . . , xl) |ϕ (a1,, ak, x1, . . . , xl)};

where R is a relation variable that is of arity k in the label variables and
arity l in the real variables, and where ϕ is a formula in the logic FO(+,
×, <, 0, 1, S) extended with the relation names, previously introduced in
the program.

2. A while-loop
while ϕ do P ;

contains a sentence ϕ as a stop condition, in the logic FO(+,×, <, 0, 1, S)
extended with the relation names previously introduced in the program,
and a program P .

3. One relation variable is designated as an output relation Rout. The
program stops and returns Rout, when that particular relation variable
has been assigned a value.

The semantics of a FO(+,×, <, 0, 1, S)+while-program applied to a trajec-
tory (sample) database is the step by step execution. The right-hand side of
every assignment statement is computed by evaluating the FO(+,×, <, 0, 1, S)
+while-program, extended with previously introduced relation names, on the
input database. Then the result is assigned to the relation variable on the
left-hand side.

The body P of a while-loop is executed as long as the sentence ϕ evaluates
to true. If and when the program ends the value of Rout is considered the
output of the program.

First, we prove the following theorem, which is, if we assume that the
label values can be encoded as (or are) natural numbers, a straightforward
generalization of the case without labels (see Chapter 2 of [25]).

Theorem 3.16. The language FO(+,×, <, 0, 1, S)+while is sound and com-
plete for the computable trajectory (sample) queries (in particular, transfor-
mations or boolean queries).

Proof of Theorem 3.16. We assume that labels are natural numbers. Now we
can consider that an input instance of S (a, t, x, y) is given as a quantifier-free
formula in the logic FO(+,×, <, 0, 1). This formula will contain the symbols
(,), ¬, ∨, +, ×, <, =, 0, 1, a, t, x and y. Suppose these symbols are

40 Complete query languages for trajectory databases

numbered ranging from 1 to 11. The quantifier-free formula will be a string
a of symbols α1α2 . . . αm. This string will be encoded as a natural number
n as follows, n = p

sα1
1 · · · psαm

m where pi is the ith prime number, and sαi
is

the number between 1 and 11 which corresponds with the symbol αi. This
product is called the Gödel-number of the formula and is unique for every
formula encoded in this way.

We now give the encoding algorithm in the language FO(+,×, <, 0, 1, S)
+while which encodes the input relation S. In the algorithm below, the rela-
tions T are for terms and F for formulas.

ENCODE: input=(S);
output=Rout;

mS := 0, T := ∅, F := ∅, Found :=False
while ¬Found do
mS := mS + 1
if mS encodes a then
T := T ∪ {(mS, a1, a2, a3, a4, a1) | ai ∈ R}

else if mS encodes t then
T := T ∪ {(mS, a1, a2, a3, a4, a2) | ai ∈ R}

else if mS encodes x then
T := T ∪ {(mS, a1, a2, a3, a4, a3) | ai ∈ R}

else if mS encodes y then
T := T ∪ {(mS, a1, a2, a3, a4, a4) | ai ∈ R}

else if mS encodes 0 then
T := T ∪ {(mS, a1, a2, a3, a4, 0) | ai ∈ R}

else if mS encodes 1 then
T := T ∪ {(mS, a1, a2, a3, a4, 1) | ai ∈ R}

else if mS encodes (s+ t) then
T := T ∪ {(mS, a1, a2, a3, a4, c+ d) | T (enc(s), a1, a2, a3, a4, c)

∧ T (enc(t), a1, a2, a3, a4, d)}
else if mS encodes (s× t) then
T := T ∪ {(mS, a1, a2, a3, a4, cd) | T (enc(s), a1, a2, a3, a4, c)

∧ T (enc(t), a1, a2, a3, a4, d)}
else if mS encodes (s ≤ t) then
F := F ∪ {(mS , a1, a2, a3, a4) | (∃c)(∃d) (T (enc(s), a1, a2, a3, a4, c)

∧ T (enc(t), a1, a2, a3, a4, d) ∧ (c ≤ d))}
else if mS encodes (¬ϕ) then
F := F ∪ {(mS , a1, a2, a3, a4) | ¬F (enc(ϕ), a1, a2, a3, a4)}

else if mS encodes (ϕ ∨ ψ) then
F := F ∪ {(mS , a1, a2, a3, a4) | F (enc(ϕ), a1, a2, a3, a4)

∨ F (enc(ψ), a1, a2, a3, a4)}
end if
Found:= mS encodes a formula and

∀a1∀a2∀a3∀a4 (F (mS , a1, a2, a3, a4) ↔ S(a1, a2, a3, a4))

3.2. Complete query languages for trajectory databases 41

end while
Rout := {(mS)}

When the encoding program ends, T will contain all tuples (mS , r1, r2, r3,
r4, f) where mS is the encoding of a term in the variables a, t, x and y that
outputs f on input (r1, r2, r3, r4).

And F contains all tuples (mS, r1, r2, r3, r4) where mS is the encoding of
a formula ϕ in the variables a, t, x and y where ϕ(r1, r2, r3, r4) evaluates to
true.

Note that the algorithm works because sub-formulas or sub-terms are eval-
uated before the formulas or terms in which they appear are evaluated (be-
cause, clearly, enc(s) ≤ enc(t) if s is a sub-formula or sub-term of t).

Now there exists, for each query Q a counter program MQ, such that for
each input database S on which Q is defined, and which is encoded by mS,
MQ(mS) is the encoding (a natural number) of a quantifier-free FO(+,×, <,
0, 1)-formula representing Q (S). If the query is a boolean query the formula
will return either true or false, if the query is a trajectory transformation,
then a formula in the variables a, t, x and y is returned. If Q is not defined
on S then MQ does not halt on input mS . Furthermore, since we have full
computational power over the natural numbers in FO(+,×, <, 0, 1, S)+while

(see Chapter 2 of [25]), MQ can be simulated in FO(+,×, <, 0, 1, S)+while.
This concludes the computation step.

Decoding can easily be done by slightly adapting the encoding program.
This time the input is a number f , where f is the natural number MQ(mS).
The stop condition for the while-loop is replaced by Found := (m = f) and
the algorithm outputs a set {(r1, r2, r3, r4) | F (n, r1, r2, r3, r4)} representing
the formula that represents the output of the query.

DECODE: input=f ;
output=Rout;

m := 0, T := ∅, F := ∅, Found :=False
while ¬ Found do
m := m+ 1
if m encodes a then
T := T ∪ {(m, a1, a2, a3, a4, a1) | ai ∈ R}

else if m encodes t then
T := T ∪ {(m, a1, a2, a3, a4, a2) | ai ∈ R}

else if m encodes x then
T := T ∪ {(m, a1, a2, a3, a4, a3) | ai ∈ R}

else if m encodes y then
T := T ∪ {(m, a1, a2, a3, a4, a4) | ai ∈ R}

42 Complete query languages for trajectory databases

else if m encodes 0 then
T := T ∪ {(m, a1, a2, a3, a4, 0) | ai ∈ R}

else if m encodes 1 then
T := T ∪ {(m, a1, a2, a3, a4, 1) | ai ∈ R}

else if m encodes (s+ t) then
T := T ∪ {(m, a1, a2, a3, a4, c+ d) | T (enc(s), a1, a2, a3, a4, c)

∧ T (enc(t), a1, a2, a3, a4, d)}
else if m encodes (s× t) then
T := T ∪ {(m, a1, a2, a3, a4, cd) | T (enc(s), a1, a2, a3, a4, c)

∧ T (enc(t), a1, a2, a3, a4, d)}
else if m encodes (s ≤ t) then
F := F ∪ {(m, a1, a2, a3, a4) | (∃c)(∃d)(T (enc(s), a1, a2, a3, a4, c)

∧ T (enc(t), a1, a2, a3, a4, d) ∧ (c ≤ d))}
else if m encodes (¬ϕ) then
F := F ∪ {(m, a1, a2, a3, a4) | ¬F (enc(ϕ), a1, a2, a3, a4)}

else if m encodes (ϕ ∨ ψ) then
F := F ∪ {(m, a1, a2, a3, a4) | F (enc(ϕ), a1, a2, a3, a4)

∨ F (enc(ψ), a1, a2, a3, a4)}
end if
Found:= m = f

end while
Rout := {(r1, r2, r3, r4) | F (n, r1, r2, r3, r4)}

The query Q has now been effectively computed by the sequence

encode;compute;decode;

of programs.

The following summarises how a query is effectively computed.

S - Q(S)

ms

ENCODE

?

MQ

- MQ(mS)

DECODE

6

3.2.4.2 The language FO(Before,minSpeed, S̃)

Next, we extend the logic FO(Before,minSpeed, S̃) with a sufficient supply
of relation variables (of all arities), assignment statements and while-loops.

3.2. Complete query languages for trajectory databases 43

Afterward, we will prove that this extended language is computationally sound
and complete for V-invariant computable queries on trajectory (sample) da-
tabases.

Definition 3.17. A program in FO(Before,minSpeed, S̃)+while is a finite se-
quence of assignment statements and while-loops:

1. An assignment statement is of the form

R̃ := {(a1, . . . , ak, p1, . . . , pl, v1, . . . , vm) |
ϕ (a1, . . . , ak, p1, . . . , pl, v1, . . . , vm)};

where R̃ is a relation variable of arity k in the label variables, arity l in
the time-space point variables and arity m in the speed variables, and ϕ
is a formula in the language FO(Before,minSpeed, S̃) extended with the
relation labels that were previously introduced in the program.

2. A while-loop

while ϕ do P ;

consists of a sentence ϕ in FO(Before,minSpeed, S̃) extended with pre-
viously introduced relation names and a FO(Before,minSpeed, S̃)+while-
program P .

3. One relation variable is designated as an output relation R̃out. The
program ends once that particular relation variable has been assigned a
value.

The semantics of FO(Before,minSpeed, S̃)+while should be clear and is like
that of FO(+,×, <, 0, 1, S)+while. A program defines a query on a trajectory
(sample) database. Indeed, given an input relation, as soon as a value is
assigned to the relation R̃out, the program halts and returns an output; or the
program might loop forever on that input. Thus, a program defines a partial
function from input to output relations. We remark that the output relation
is computable from the input.

Once we have fixed a data model for trajectories or trajectory samples (see
Section 2.1) and concrete data structures to implement the data model, we say
that a partial function on trajectory (sample) databases is computable, if there
exists a counter machine that computes the function, given the particular data
encoding and data structures (see [25] for details).

Theorem 3.18. FO(Before,minSpeed, S̃)+while is complete for the computable
V-invariant queries on trajectory (sample) databases.

44 Complete query languages for trajectory databases

Proof of Theorem 3.18. We need to prove that that every computable trajec-
tory (sample) transformation or boolean trajectory (sample) query is express-
ible in FO(Before,minSpeed,S̃)+while. To do this, we assume again that the
label values are natural numbers. We consider, as in the proof of Theorem 3.16,
an instance S̃(a, p) to be given as S (a, t, x, y), i.e., as a quantifier-free formula
in FO(+,×, <, 0, 1). We now present the algorithm to encode an input relation
S (a, t, x, y) in the language FO(Before,minSpeed, S̃)+while.

To do this, we need the predicate Plus(e0, e2, e3, a, b, c) that expresses that,
relative to the computation plane (e0, e2, e3) (see the proof of Theorem 3.11 for
the notion of computation plane), c is the sum of a and b, where a, b and c are
collinear with e0e2, thus simulating addition. The predicate Times(e0, e2, e3,
a, b, c) that expresses that, relative to the computation plane (e0, e2, e3), c is
the product of a and b, where a, b and c are collinear with e0e2, simulating
multiplication. The predicate Less(e0, e2, e3, a, b) expresses that, relative to
the computation plane (e0, e2, e3), a encodes a number on e0e2 that is smaller
than the number encoded by b. All these predicates can be formulated using
only the predicate Between2(see, e.g., [12]).

Again relation variables T̃ and F̃ are introduced. Terms are encoded in
T̃ and formulas in F̃ . The arity of T̃ is 10 and tuples in T̃ are of the form
(e0, e1, e2, e3,m, pa, tp, xp, yp, w), where m is a time-space point on e0e2 denot-
ing a natural number that encodes a formula in the variables a, t, x and y.
This formula (term), when evaluated in pa, tp, xp and yp, outputs w.

The arity of F̃ is 9 and points in F̃ are of the form (e0, e1, e2, e3,m, pa, tp,
xp, yp), where m is a time-space point denoting a natural number that encodes
a formula in the variables a, t, x and y. This formula, when evaluated in pa,
tp, xp and yp, gives true.

In all the above tuples tp, xp and yp are collinear with e0 and e2 and pa is
collinear with e0 and e1.

Aside from this, we also need to define the notion of V-canonization and
the V-type of trajectory (sample) databases. As it has become clear from the
proof of Theorem 3.16, we can induce an order on the symbols used in FO(+,
×, <, 0, 1, S)-formulas and thus induce an order on the formulas themselves
using the numbers that encode them.

Definition 3.19. The V-canonization of a trajectory (sample) database in-
stance D (of S), denoted by CanonV(D), is the trajectory (sample) database
D′ that is V-equivalent to D and is represented by a quantifier-free FO(+,×,
<, 0, 1)-formula ϕCanonV (D) that occurs first among all encodings of trajectory
(sample) databases that are V-equivalent to D.

The V-type of a trajectory (sample) database D, denoted by TypeV(D), is

3.2. Complete query languages for trajectory databases 45

the set
TypeV(D) = {g ∈ V | g(D) = CanonV(D)}.

Encoding step. We now present the encoding algorithm.

ENCODE: input=(S̃);
output=(nCanonV(S), T ypeV)

m := 0, T̃ := ∅, F̃ := ∅, Found:=False
while ¬Found do
m := m+ 1
if m encodes a then
T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp, pa) | pa ∈ e0e1 and tp, xp, yp ∈ e0e2}

else if m encodes t then
T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp, tp) | pa ∈ e0e1 and tp, xp, yp ∈ e0e2}

else if m encodes x then
T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp, xp) | pa ∈ e0e1 and tp, xp, yp ∈ e0e2}

else if m encodes y then
T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp, yp) | pa ∈ e0e1 and tp, xp, yp ∈ e0e2}

else if m encodes 0 then
T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp, e0) | pa ∈ e0e1 and tp, xp, yp ∈ e0e2}

else if m encodes 1 then
T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp, e2) | pa ∈ e0e1 and tp, xp, yp ∈ e0e2}

else if m encodes (s+ t) then
T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp, pe) | T̃ (e0, e1, e2, e3, enc(s), pa, tp, xp,

yp, pc) ∧ T̃ (e0, e1, e2, e3, enc(t), pa, tp, xp, yp, pd) ∧ Plus(e0, e2, e3, pc, pd, pe)}
else if m encodes (s× t) then
T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp, pe) | T̃ (e0, e1, e2, e3, enc(s), pa, tp, xp,

yp, pc) ∧ T̃ (e0, e1, e2, e3, enc(t), pa, tp, xp, yp, pd) ∧ Times(e0, e2, e3, pc, pd, pe)}
else if m encodes (s ≤ t) then
F̃ := F̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp) | (∃pc)(∃pd) (T̃ (e0, e1, e2, e3, enc(s),

pa, tp, xp, yp, pc) ∧ T̃ (e0, e1, e2, e3, enc(t), pa, tp, xp, yp, pd) ∧ Less(e0, e2, e3,
pc, pd)}

else if m encodes (s = t) then
F̃ := F̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp) | (∃pc)(∃pd)(T̃ (e0, e1, e2, e3, enc(s),

pa, tp, xp, yp, pc) ∧ T̃ (e0, e1, e2, e3, enc(t), pa, tp, xp, yp, pd) ∧ (pc = pd)}
else if m encodes (¬ϕ) then
F̃ := F̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp) | ¬F̃ (e0, e1, e2, e3, enc(ϕ), pa, tp, xp,
yp)}

else if m encodes (ϕ ∨ ψ) then
F̃ := F̃ ∪ {(e0, e1, e2, e3,m, pa, tp, xp, yp) | F̃ (e0, e1, e2, e3, enc(ϕ), pa, tp, xp, yp)

∨ F̃ (e0, e1, e2, e3, enc(ψ), pa, tp, xp, yp)}
end if
Found:= m encodes the formula CanonV(S)

46 Complete query languages for trajectory databases

end while
nCanonV(S) := m
TypeV := {g ∈ V | g(S) = CanonV(S)}

As shown in [12],“m encodes the formula CanonV(S)” can easily be checked
since CanonV(S) can be computed because V is a semi-algebraic transforma-
tion group. The following formula in one free variablem, which is the encoding
of a formula, demonstrates how this can be done:

∀e0∀e1∀e2∀e3∃a00∃a11∃a12∃a21∃a22∃b0∃b1∃b2(CoSys(e0, e1, e2, e3) ∧
a00 > 0 ∧ a00a00 = (a11a22 − a12a21)(a11a22 − a12a21) ∧

∀pa∀pt′∀px′∀py′(F̃ (u0, u1, u2, u3,m, pa, pt′ , px′ , py′) ↔
∃p∃tp∃xp∃yp(S̃(pa, p) ∧ Coordinates(u0, u1, u2, u3, p, tp, xp, yp)

∧ pt′ = a00tp + b0 ∧ px′ = a11xp + a12yp + b1

∧ py′ = a21xp + a22yp + b2))).

We note that all variables range over time-space points. For the sake of
clarity, we note that the predicates, denoting that some time-space points play
the role of a real number, have been omitted here. We have also used abbrevi-
ations for addition, multiplication and substraction. The above formula states
that given a natural number m, then for all coordinate systems the following
needs to be true: all points (pa, p

′) for which the formula encoded by m gives
true, are the image of a point (pa, p) under a transformation in V and (pa, p)
is such that S̃(pa, p) is true. And vice versa. This transformation

(t, x, y) 7→

a00 0 0
0 a11 a12

0 a21 a22

t
x
y

+

b0
b1
b2

 ,

where a00, a11, a12, a21, a22, b0, b1, b2 are constrained as in the formula above,
clearly make this transformation belong to V.

TypeV can be computed by using a similar formula but without the quan-
tification of the variables used to parameterize the transformation and coordi-
nate system [12], i.e., without ∃a00∃a11∃a12∃a21∃a22∃b0∃b1∃b2. This concludes
the encoding step.

Computation step. This step can be carried out as outlined in the proof
of Theorem 3.16. Since the predicate Between2 implicitly belongs to FO(Before,
minSpeed, S̃), we can simulate all arithmetic operations on natural numbers
in that language extended with a while-loop, which means we can simulate a
counter program.

3.2. Complete query languages for trajectory databases 47

More specifically, there exists, for each query Q a counter program MQ,
such that for each database D on which Q is defined MQ(nCanonV (D)) is the
encoding (a time-space point encoding a natural number) of a quantifier-free
formula representing Q(CanonV(D)). If Q is not defined on D then MQ

does not halt. Furthermore, since we have full computational power over the
natural numbers in FO(Before,minSpeed,S̃)+while, MQ can be simulated in
this programming language. This concludes the computation step.

Decoding step. Decoding requires a bit more work, since we wish to
output Q(D) and not Q(CanonV(D)). Here is where we need TypeV(D)
which was computed during the encoding step. Since Q is a V-invariant query,
we have, for all g ∈ TypeV(D) that Q(CanonV(D)) = Q(g(D)) = g(Q(D)).
The decoding can effectively be done by again slightly modifying the encoding
algorithm. The stop condition for the while loop becomes Found := m =
MQ(nCanonV(D)). On exiting the while loop we output the set F (e0, e1, e2, e3,
MQ(nCanonV(D)), a, tp, xp, yp).

After exiting the while loop we execute one more statement, namely the
computation of Q(D). The latter is a set which contains all points (a, p), where
a is a label and p a time-space point, for which there exists a transformation
g ∈ TypeV(D) such that g(p) has coordinates (encoded in time-space points on
the line e0e2) g(p)t, g(p)x and g(p)y for which F (e0, e1, e2, e3,MQ(nCanonV (D)),
a, g(p)t, g(p)x, g(p)y) is true. This can effectively be written in a FO(Before,
minSpeed,S̃)+while-expression as shown in [12] and sketched here:

∀e0∀e1∀e2∀e3∃a00∃a11∃a12∃a21∃a22∃b0∃b1∃b2 (CoSys(e0, e1, e2, e3) ∧
φTypeV(D)(a00, a11, a12, a21, a22, b0, b1, b2) ∧

∀pt′∀px′∀py′ (F̃ (e0, e1, e2, e3,MQ(nCanonV (D)), pa, pt′ , px′ , py′)

∧ ∃tp∃xp∃yp Coordinates(e0, e1, e2, e3, p, tp, xp, yp)

∧ pt′ = a00tp + b0 ∧ px′ = a11xp + a12yp + b1

∧ py′ = a21xp + a22yp + b2))

where φTypeV(D)(a00, a11, a12, a21, a22, b0, b1, b2) is a formula that expresses that
the transformation described above and parameterized by (a00, a11, a12, a21,
a22, b0, b1, b2) is part of TypeV(D).

The wanted FO(Before,minSpeed,S̃)+while program consists of consecu-
tively executing

encode;compute;decode; .

This concludes the proof.

48 Complete query languages for trajectory databases

3.3 Concluding remarks

We have given first-order complete and computationally complete query lan-
guages for queries invariant under these transformations.

The results discussed in this paper concern movement in the unrestricted
two-dimensional space. In particular space-time prisms are defined for free
movement in R2. For practical purposes, this is unrealistic however. In appli-
cations of trajectory data, such as traffic management, movement is typically
restricted to road networks. We are working on understanding properties of
space-time prisms on road networks. But the study of speed-preserving and
space-time prism-preserving transformations on road networks and of query
languages to express queries invariant under such transformations is still an
unexplored field.

4
The alibi query

The alibi query is the boolean query which asks whether two moving objects,
say with labels a and a′, that are available as samples in a trajectory database,
can have physically met. Since the possible positions of these moving objects
are, in between sample points given speed limitations, given by space-time
prisms, the alibi query asks to decide if the two space-time prism chains of a

and a′ intersect or not. To answer this query efficiently, it suffices to have an
efficient method to decide whether two space-time prisms intersect.

In this chapter we first investigate the alibi query in dimension one, and
next in dimension two.

4.1 The alibi query in dimension one

First, we present a solution to the alibi query on a straight line, i.e., on R.
This is both a warm-up to a solution to the alibi query for movement in R2,
since some ideas that yield a solution will return there, and to a solution for
the alibi query on road networks that is discussed in Chapter 5. For R, we
give a solution by means of a formula and for road networks, we describe an
algorithm.

4.1.1 The alibi query for movement on a line

Let us consider a space-time prism with origin (to, xo), destination (td, xd) and
speed limit v and one with with origin (t′o, x

′
o), destination (t′d, x

′
d) and speed

49

50 The alibi query

ti

xi xi+1
x

t

ti+1

Figure 4.1: A one-dimensional space-time prism.

limit v′. The space-time prisms are then denoted by P(xo, to, xd, td, v), with
to ≤ td, and P(x′o, t

′
o, x

′
d, t

′
d, v

′), with t′o ≤ t′d. Using the Definition 2.8 from
Section 2.3, we can write the following FO(+,×, <, 0, 1)-formula that defines
the first space-time prism:

ψP(t, x, to, xo, td, xd, v) :=

to ≤ t ≤ td ∧ (x− xo)
2 ≤ v2(t− to)

2 ∧ (x− xd)
2 ≤ v2(t− td)

2.

In this formula to, xo, td, xd and v appear as parameters and all tuples (t, x)
that satisfy this formula belong to P(xo, to, xd, td, v). Figure 4.1 illustrates a
space-time prism in one dimension.

A non-empty intersection of two space-time prisms can be satisfied in two
ways:

Case 1: Either one space-time prism must be entirely contained in the
other; or

Case 2: this is not the case and the borders of the two space-time prisms
must intersect, which means at least one of the bordering line-segments
of both space-time prisms must intersect.

Case 1: The first case, illustrated in Figure 4.2, can be translated into a
formula by expressing that a top of one space-time prism is in the other, i.e.,

ψP(t′o, x
′
o, to, xo, td, xd, v) ∨ ψP (t′d, x

′
d, to, xo, td, xd, v)

∨ ψP(to, xo, t
′
o, x

′
o, t

′
d, x

′
d, v

′) ∨ ψP(td, xd, t
′
o, x

′
o, t

′
d, x

′
d, v

′)

should hold.

Case 2: The second case, illustrated in Figure 4.3, requires some more work.
For this we need to compute two other points of the polygons that make up

4.1. The alibi query in dimension one 51

Figure 4.2: One space-time prism containing another.

Figure 4.3: Intersecting space-time prisms.

the space-time prism, and we need to do this for each space-time prism. After
that, we need to check if there exists a pair of line-segments, one from each
space-time prism, that intersect.

The point (tl, xl), we are about to compute, is the intersection of the lines
given by the following set of equations

{

(xo − x) = v (t− to)
(xd − x) = v (td − t)

which is a non-singular system and therefor yields to a unique solution (given
the usual assumptions that the space-time prism is non-degenerate and non-
empty, cases that are treated separately, later on). We have

(tl, xl) =

(

v (td + to) − (xd − xo)

2v
,
(xo + xd) − v (td − to)

2

)

.

The point (tr, xr) is the intersection of the lines given by the following set
of equations

{

(xo − x) = −v (t− to)
(xd − x) = −v (td − t) ,

and thus,

(tr, xr) =

(

v (td + to) − (xo − xd)

2v
,
(xo + xd) + v (td − to)

2

)

.

52 The alibi query

xo xd
x

t

td

to

(tr, xr)(tl, xl)

Figure 4.4: A one-dimensional space-time prism .

Similarly we get

(

t′l, x
′
l

)

=

(

v′ (t′d + t′o) − (x′d − x′o)

2v′
,
(x′o + x′d) − v′ (t′d − t′o)

2

)

and

(

t′r, x
′
r

)

=

(

v′ (t′d + t′o) − (x′o − x′d)

2v′
,
(x′o + x′d) + v′ (t′d − t′o)

2

)

.

These new points are visualised in Figure 4.4.

A short intermezzo. Now that we have these corner points, the only ex-
pression needed to finish the expression for the alibi query is a formula in
the variables (t0, x0, t1, x1, t

′
0, x

′
0, t

′
1, x

′
1) that returns true if and only if the line

segment with endpoints (t0, x0) and (t1, x1) intersects the segment with end-
points (t′0, x

′
0) and (t′1, x

′
1). When we have this expression, we can write down

an expression for Case 2.
So, basically we need to find an intersection, if it exists, between the lines

{

(x, t) = (x0, t0) + λ (x1 − x0, t1 − t0)
(x, t) = (x′0, t

′
0) + µ(x′1 − x′0, t

′
1 − t′0)

and an intersection between the segments yields to the condition λ, µ ∈ [0, 1].
Computing the intersection means solving the equation system

(x0, t0) + λ (x1 − x0, t1 − t0) =
(

x′0, t
′
0

)

+ µ
(

x′1 − x′0, t
′
1 − t′0

)

which yields to the system

{

(x0 − x′0) + λ (x1 − x0) = µ (x′1 − x′0)
(t0 − t′0) + λ (t1 − t0) = µ (t′1 − t′0) .

4.1. The alibi query in dimension one 53

We want this system to have a unique solution. This is the case if it is
non-singular, i.e., if and only if the determinant

∣

∣

∣

∣

x1 − x0 x′1 − x′0
t1 − t0 t′1 − t′0

∣

∣

∣

∣

6= 0.

If this determinant is zero and the inclusion test (Case 1) failed then we can
conclude the two segments do not intersect at all.

Solving for µ yields

µ =
(x0 − x′0) (t1 − t0) − (t0 − t′0) (x1 − x0)

(x′1 − x′0) (t1 − t0) − (t′1 − t′0) (x1 − x0)

and solving for λ yields

λ =
(t0 − t′0) (x′1 − x′0) − (t′1 − t′0) (x0 − x′0)

(t′1 − t′0) (x′1 − x′0) − (t′1 − t′0) (x′1 − x′0)
.

The conditions on λ and µ then read as follows: 0 ≤ µ ≤ 1 if and only if

0 ≤ (x0 − x′0) (t1 − t0) − (t0 − t′0) (x1 − x0)

(x′1 − x′0) (t1 − t0) − (t′1 − t′0) (x1 − x0)
≤ 1

and 0 ≤ λ ≤ 1 if and only if

0 ≤ (t0 − t′0) (x′1 − x′0) − (t′1 − t′0) (x0 − x′0)

(t′1 − t′0) (x′1 − x′0) − (t′1 − t′0) (x′1 − x′0)
≤ 1.

Let ψµ(t0, x0, t1, x1, t
′
0, x

′
0, t

′
1, x

′
1) and ψλ(t0, x0, t1, x1, t

′
0, x

′
0, t

′
1, x

′
1) be formulas

expressing the above conditions.
To verify the intersection of the segment with endpoints (t0, x0) and (t1, x1)

and the segment with endpoints (t′0, x
′
0) and (t′1, x

′
1), the determinant needs to

be non-zero and both ψλ and ψµ need to be satisfied. Let the formula ψ∩(t0,
x0, t1, x1, t

′
0, x

′
0, t

′
1, x

′
1) express that this combination of two line segments in-

tersects.
Note that we only need to check that a pair intersects for all pairs of

opposing sides of a space-time prism. That means we need to check for every
segment of the left-hand side of the first space-time prism if it intersects with
a segment from the right-hand side of the second space-time prism, and vice
versa. This means that Case 2 can be expressed as:

ψ∩(to, xo, tl, xl, t
′
o, x

′
o, t

′
r, x

′
r) ∨ ψ∩(to, xo, tl, xl, t

′
r, x

′
r, t

′
d, x

′
d)

∨ ψ∩(tl, xl, td, xd, t
′
o, x

′
o, t

′
r, x

′
r) ∨ ψ∩(tl, xl, td, xd, t

′
r, x

′
r, t

′
d, x

′
d)

∨ ψ∩(to, xo, tr, xr, t
′
o, x

′
o, t

′
l, x

′
l) ∨ ψ∩(to, xo, tr, xr, t

′
l, x

′
l, t

′
d, x

′
d)

54 The alibi query

∨ ψ∩(tr, xr, td, xd, t
′
o, x

′
o, t

′
l, x

′
l) ∨ ψ∩(tr, xr, td, xd, t

′
l, x

′
l, t

′
d, x

′
d).

Until now, we have assumed space-time prisms to be non-degenerate. If
the first space-time prism is degenerate, i.e. (xd −xo)

2 = v2(td − to)
2, and the

second is not, i.e. (x′d − x′o)
2 < v′2(t′d − t′o)

2, then we merely need to verify
intersection for the pairs

ψ∩(to, xo, td, xd, t
′
o, x

′
o, t

′
r, x

′
r) ∨ ψ∩(to, xo, td, xd, t

′
r, x

′
r, t

′
d, x

′
d)

∨ ψ∩(to, xo, td, xd, t
′
o, x

′
o, t

′
l, x

′
l) ∨ ψ∩(to, xo, td, xd, t

′
l, x

′
l, t

′
d, x

′
d).

Finally if the both space-time prisms are degenerate, i.e. (xd − xo)
2 =

v2(td − to)
2 and (x′d − x′o)

2 = v′2(t′d − t′o)
2, then we only have to test

ψ∩(to, xo, td, xd, t
′
o, x

′
o, t

′
d, x

′
d).

Combining all these cases gives an expression for the alibi query on R. An
implementation of this query in Mathematica for the more general setting
of movement in R2 can be found in [24]. The special case of movement on R
can be obtained by placing all four points on the x-axis.

4.2 The alibi query in dimension two

We can now proceed to the alibi query in two dimensions. First we introduce
an extra relation to the query language introduced in Chapter 3. This relation
makes speed limits location dependent. The relation SL(t, x, y, v) expresses
that at (t, x, y) the reigning speed limit equals v. We will use this speed limit
to constrain the object’s speed between sample points. For the point based
language we introduce a similar relation S̃L(p, v).

We proceed to an expression for the alibi query in the FO(Before,minSpeed,
S̃, S̃L)-language. The following sections are dedicated to the intersection of
two space-time prisms, where we start with a dissection of a single space-time
prism, then break a possible intersection of two space-time prisms down in
three cases, and give a formula that decides the alibi query.

We conclude this chapter with a formula that decides the alibi query for a
fixed moment in time.

4.2.1 The alibi query

More concretely, if the trajectory with label a is given in the trajectory database
by the tuples (a, t0, x0, y0),, (a, tN , xN , yN) and the trajectory with label a′

by the tuples (a′, t′0, x
′
0, y

′
0),, (a

′, t′M , x
′
M , y′M), then a has an alibi for not

meeting a′ if for all i, 0 ≤ i ≤ N − 1 and all j, 0 ≤ j ≤M − 1,

P(ti, xi, yi, ti+1, xi+1, yi+1, vi) ∩ P(t′j , x
′
j , y

′
j , t

′
j+1, x

′
j+1, y

′
j+1, v

′
j) = ∅. (†)

4.2. The alibi query in dimension two 55

We remark that the alibi query can be expressed by a formula in the logic
FO(+,×, <, 0, 1, S), which we now give. To start, we denote the subformula

S(a, t1, x1, y1, v1) ∧ S(a, t2, x2, y2) ∧
∀t3∀x3∀y3∀v3 (S(a, t3, x3, y3) → ¬(t1 < t3 ∧ t3 < t2)) ,

that expresses that (t1, x1, y1) and (t2, x2, y2) are consecutive sample points
on the trajectory with label a by σ(a, t1, x1, y1, t2, x2, y2).

The alibi query on a and a′ is then expressed as ϕalibi[a, a
′] =

¬ ∃t1∃x1∃y1∃v1∃t2∃x2∃y2∃v2∃t′1∃x′1∃y′1∃v′1∃t′2∃x′2∃y′2∃v′2
(

σ(a, t1, x1, y1, t2, x2, y2) ∧ σ(a′, t′1, x
′
1, y

′
1t

′
2, x

′
2, y

′
2)

∧ SL(t1, x1, y1, v1) ∧ SL(t′1, x
′
1, y

′
1, v

′
1)

∧ ∃t∃x∃y (t1 ≤ t ≤ t2 ∧ t′1 ≤ t ≤ t′2
∧ (x− x1)

2 + (y − y1)
2 ≤ (t− t1)

2v2
1

∧ (x− x2)
2 + (y − y2)

2 ≤ (t2 − t)2v2
1

∧ (x− x′1)
2 + (y − y′1)

2 ≤ (t− t′1)
2v′21

∧ (x− x′2)
2 + (y − y′2)

2 ≤ (t′2 − t)2v′21)
)

.

It is well-known that FO(+,×, <, 0, 1, S)-expressible queries can be eval-
uated effectively on arbitrary trajectory database inputs [25, 17]. Briefly ex-
plained, this evaluation can be performed by (1) replacing the occurrences
of S(a, t, x, y, v) by a disjunction describing all the sample points belong-
ing to the trajectory sample a; the same for a′; and (2) eliminating all the
quantifiers in the obtained formula. In concreto, using the notation from
above, each occurrence of S(a, t, x, y, v) would be replaced in ϕalibi[a, a

′] by
∨N−1

i=0 (t = ti ∧ x = xi ∧ y = yi ∧ v = vi), and similar for a′. This results in
a (rather complicated) first-order formula over the reals ϕ̃alibi[a, a

′] in which
the predicate S does not occur any more. Since first-order logic over the
reals admits the elimination of quantifiers (i.e., every formula can be equiva-
lently expressed by a quantifier-free formula), we can decide the truth value
of ϕ̃alibi[a, a

′] by eliminating all quantifiers from this expression. In this case,
we have to eliminate one block of existential quantifiers.

However, we can simplify the quantifier-elimination problem. It is easy to
see, looking at (†) above, that ¬ϕ̃alibi[a, a

′] is equivalent to

N−1
∨

i=0

M−1
∨

j=0

ψalibi[ti, xi, yi, ti+1, xi+1, yi+1, vi, t
′
j , x

′
j , y

′
j, t

′
j+1, x

′
j+1, y

′
j+1, v

′
j],

where the restricted alibi-query formula ψalibi(ti, xi, yi, ti+1, xi+1, yi+1, vi, t
′
j,

x′j, y
′
j , t

′
j+1, x

′
j+1, y

′
j+1, v

′
j) abbreviates the formula

∃t∃x∃y (ti ≤ t ≤ ti+1 ∧ t′j ≤ t ≤ t′j+1 ∧ (x− xi)
2 + (y − yi)

2 ≤ (t− ti)
2v2

i

56 The alibi query

∧ (x− xi+1)
2 + (y − yi+1)

2 ≤ (ti+1 − t)2v2
i

∧ (x− x′j)
2 + (y − y′j)

2 ≤ (t− t′j)
2v′2j

∧ (x− x′j+1)
2 + (y − y′j+1)

2 ≤ (t′j+1 − t)2v′2j)

that expresses that two space-time prisms intersect.
So, the instantiated formula

ψalibi[ti, xi, yi, ti+1, xi+1, yi+1, vi, t
′
j , x

′
j , y

′
j , t

′
j+1, x

′
j+1, y

′
j+1, v

′
j]

expresses (†). To eliminate the existential block of quantifiers (∃t∃x∃y) from
this expression, existing software-packages for quantifier elimination, such as
QEPCAD [15], Redlog [30] and Mathematica [32] can be used. We exper-
imented QEPCAD, Redlog and Mathematica to decide if several space-
time prisms intersected. The latter two programs have a similar performance
and they outperform QEPCAD. To give an idea of their performance, we
give some results with Mathematica: the computation of ψalibi[0, 0, 0, 1, 2, 2,√

8, 0, 3, 3, 1, 2, 2, 2] takes 6 seconds; that of ψalibi[0, 0, 0, 1, 2, 2,
√

8, 0, 3, 4, 1, 2,
2, 2] takes 209 seconds and the computation of ψalibi[0, 0, 0, 1,−1,−1, 1, 0, 1, 1,
2,−1, 1, 2] takes 613 seconds. Roughly speaking, our experiments show that,
using Mathematica, this quantifier elimination can be computed on average
in about 2 minutes (running Windows XP Pro, SP2, with a Intel Pentium
M, 1.73GHz, 1GB RAM). This means that evaluating the alibi query on the
lifeline necklaces of two moving objects that each consist of 100 space-time
prisms would take around 100 × 100 × 2 minutes, which is almost two weeks,
when applied naively and around (100 + 100) × 2 minutes or a quarter day,
when first the intersection of time-intervals is tested. Clearly, in both cases,
such an amount of time is unacceptable.

However, there is a better solution, which we discuss next, that can decide
if two space-time prisms intersect or not in a couple of milliseconds.

4.2.2 The parametric alibi query

The uninstantiated formula

ψalibi(ti, xi, yi, ti+1, xi+1, yi+1, vi, t
′
j , x

′
j , y

′
j , t

′
j+1, x

′
j+1, y

′
j+1, v

′
j)

can be viewed as a parametric version of the restricted alibi query, where
the free variables are considered parameters. This formula contains three
existential quantifiers and the existing software packages for quantifier elim-
ination could be used to obtain a quantifier-free formula ψ̃alibi(ti, xi, yi, ti+1,
xi+1, yi+1, vi, t

′
j , x

′
j , y

′
j, t

′
j+1, x

′
j+1, y

′
j+1, v

′
j) that is equivalent to ψalibi. The for-

mula ψ̃alibi could then be used to straightforwardly answer the alibi query

4.2. The alibi query in dimension two 57

in time linear in its size, which is independent of the size of the input and
therefore constant. We have tried to eliminate the existential block of quanti-
fiers ∃t∃x∃y from ψalibi using Mathematica, Redlog and QEPCAD. After
some minutes of running, Redlog invokes QEPCAD. After several days of
running QEPCAD on the configuration described above, we have interrupted
the computation without result. Also Mathematica ran into problems with-
out giving an answer. It is clear that eliminating a block of three existential
quantifiers from a formula in 17 variables is beyond the existing quantifier-
elimination implementations. Also, the instantiation of several parameters to
adequately chosen constant values does not help to produce a solution. For in-
stance, without loss of generality we can locate (ti, xi, yi) in the origin (0, 0, 0)
and locate the other apex of the first space-time prism above the y-axis, i.e., we
can take xi+1 = 0. Furthermore, we can take vi = 1 and ti+1 = 1. But Math-

ematica, Redlog and QEPCAD cannot also not cope with this simplified
situation.

The main contribution of this chapter is a the description of a quantifier-
free formula equivalent to ψalibi(ti, xi, yi, ti+1, xi+1, yi+1, vi, t

′
j , x

′
j , y

′
j , t

′
j+1, x

′
j+1,

y′j+1, v
′
j). The solution we give is not a quantifier-free first-order formula in

a strict sense, since it contains root expressions, but it can be easily turned
into a quantifier-free first-order formula of similar length. It answers the alibi
query on the lifeline necklaces of two moving objects that each consist of 100
space-time prisms in less than a minute. This description of this quantifier-free
formula is the subject of Section 4.2.5.

4.2.3 FO(Before, minSpeed, S)-expression of the alibi query

In this short interlude we will show that the alibi query can be expressed
in a natural way in the FO(Before,minSpeed, S)-language we introduced in
Chapter 3. In that chapter, we introduced the predicate inPrism(r, p, q, v) that
decides if a spatio-temporal point r is in the space-time prism with anchors p
and q and speed limit v. The expression for inPrism(r, p, q, v) is

∃v1 (v1 ≤ v ∧ minSpeed(p, r, v1)) ∧ ∃v2 (v2 ≤ v ∧ minSpeed(r, q, v2)) .

Using this predicate we can construct a predicate prismsIntersect(p1, q1, v1,
p2, q2, v2) that decides if a space-time prism with anchors p1 and q1 and speed
limit v1 intersects another space-time prism with anchors p2 and q2 and speed
limit v2. Its expression is the following

∃r (inPrism(r, p1, q1, v1) ∧ inPrism(r, p2, q2, v2)) .

One last constraint we need to build into the predicate is to ensure that
the anchors of the space-time prisms we are about to test for intersection are

58 The alibi query

consecutive points in the trajectory sample. To achieve this we introduce the
predicate consecutive(a, p, q) decides if there are no spatio-temporal points of
the sample with label a between p and q. This can be expressed as

∀r ¬
(

S̃(a, p) ∧ S̃(a, q) ∧ S̃(a, r)

∧ Before(p, r) ∧ Before(r, q)

)

∨ (p = r ∨ q = r) .

The final predicate alibi(a, b) takes two trajectory labels a and b as input
and decides if there exists a pair of space-time prisms, one from each lifeline
necklace, that intersect or not, thus answering the alibi query. Its expression
is

∃p1∃vp1∃q1∃vq1∃p2∃vp2∃q2∃vq2
(

S̃(a, p1, vp1) ∧ S̃(a, q1, vq1) ∧ consecutive(a, p1, q1)

∧ S̃(b, p2, vp2) ∧ S̃(b, q2, vq2) ∧ consecutive(b, p2, q2)

∧ prismsIntersect(p1, q1, vp1 , p2, q2, vp2)
)

.

The mere length of this section shows how natural this language is to
describe moving objects and their space-time prisms.

4.2.4 The geometry of space-time prisms

Before we can give an analytic solution to the alibi query and prove its correct-
ness, we need to introduce some terminology concerning space-time prisms.

4.2.4.1 Geometric components of space-time prisms

Various geometric properties of space-time prisms [4, 17, 21] have already been
described in Section 2.3. Here, we need some more definitions and notations
to describe various components of a space-time prism. These components are
illustrated in Figure 4.5. In this section, let p = (tp, xp, yp) and q = (tq, xq, yq)
be two time-space points, with tp ≤ tq and let vmax be a positive real number.

The space-time prism P(p, q, vmax) is the intersection of two filled cones,
given by the system of inequalities

(x− xp)
2 + (y − yp)

2 ≤ (t− tp)
2v2

max

tp ≤ t
(x− xq)

2 + (y − yq)
2 ≤ (tq − t)2v2

max

t ≤ tq .

4.2. The alibi query in dimension two 59

The border of its bottom cone is the set of all points (t, x, y) that satisfy

ψC−(t, x, y, tp, xp, yp, vmax) := (x− xp)
2 + (y − yp)

2 = (t− tp)
2v2

max ∧ tp ≤ t

and is denoted by C−(p, vmax) or C−(tp, xp, yp, vmax); and the border of its
upper cone is the set of all points (t, x, y) that satisfy

ψC+(t, x, y, tq, xq, yq, vmax) := (x− xq)
2 + (y − yq)

2 = (tq − t)2v2
max ∧ t ≤ tq

and is denoted by C+(q, vmax) or C+(tq, xq, yq, vmax).

The set of the two apexes of P(p, q, vmax) is denoted by τP(p, q, vmax), i.e.,
τP(p, q, vmax) = {p, q}.

We call the topological border of the space-time prism P(p, q, vmax) its
mantel and denote it by ∂P(p, q, vmax). It can be easily verified that the
mantel consists of the set of points (t, x, y) that satisfy

ψ∂(t, x, y, tp, xp, yp, tq, xq, yq, vmax) := tp ≤ t ≤ tq ∧
(

2x(xp − xq) + x2
q − x2

p + 2y(yp − yq) + y2
q − y2

p ≤
v2
max

(

2t(tp − tq) + t2q − t2p
)

∧ (x− xp)
2 + (y − yp)

2 = (t− tp)
2v2

max

)

∨
(

2x(xp − xq) + x2
q − x2

p + 2y(yp − yq) + y2
q − y2

p ≥
v2
max

(

2t(tp − tq) + t2q − t2p
)

∧ (x− xq)
2 + (y − yq)

2 = (tq − t)2v2
max

)

.

The first conjunction describes the lower half of the mantel and the second
conjunction describes the upper half of the mantel. The upper and lower half
of the mantel are separated by a plane. The intersection of this plane with the
space-time prism is an ellipse, and the border of this ellipse is what we will
refer to as the rim of the space-time prism. We denote the rim of the space-
time prism P(p, q, vmax) by ρP(p, q, vmax) and remark that it is described by
the formula

ψρ(t, x, y, tp, xp, yp, tq, xq, yq, vmax) :=

(x− xp)
2 + (y − yp)

2 = (t− tp)
2v2

max ∧ tp ≤ t ≤ tq

∧ 2x(xp − xq) + x2
q − x2

p + 2y(yp − yq) + y2
q − y2

p =

v2
max

(

2t(tp − tq) + t2q − t2p
)

.

The plane in which the rim lies splits the space-time prism into an upper-
half space-time prism and a bottom-half space-time prism. The bottom-half
space-time prism is the set of all points (t, x, y) that satisfy

60 The alibi query

ψP−(t, x, y, tp, xp, yp, tq, xq, yq, vmax) :=

(x− xp)
2 + (y − yp)

2 ≤ (t− tp)
2v2

max ∧ tp ≤ t ≤ tq ∧
2x(xp − xq) + x2

q − x2
p + 2y(yp − yq) + y2

q − y2
p ≤

v2
max

(

2t(tp − tq) + t2q − t2p
)

and is denoted by P−(tp, xp, yp, tq, xq, yq, vmax).
The upper space-time prism is the set of all points (t, x, y) that satisfy

ψP+(t, x, y, tp, xp, yp, tq, xq, yq, vmax) :=

(x− xq)
2 + (y − yq)

2 ≤ (tq − t)2v2
max ∧ tp ≤ t ≤ tq ∧

2x(xp − xq) + x2
q − x2

p + 2y(yp − yq) + y2
q − y2

p ≥
v2
max

(

2t(tp − tq) + t2q − t2p
)

and is denoted by P+(tp, xp, yp, tq, xq, yq, vmax).

(tq, xq, yq)

t

y

x

ρP

C+
τP

(tp, xp, yp)

P+

P− C−

Figure 4.5: The components of the space-time prism P(tp, xp, yp, tq, xq, yq,
vmax).

4.2.4.2 The intersection of two cones

Let C−(t1, x1, y1, v1) and C−(t2, x2, y2, v2) be two bottom cones. A bottom
cone, e.g., C−(t1, x1, y1, v1), can be seen as a circle in 2-dimensional space
(x, y)-space with center (x1, y1) and linearly growing radius (t−t1)v1 as t1 ≤ t.

Let us assume that the apex of neither of these cones is inside the other
cone, i.e.,

4.2. The alibi query in dimension two 61

(

(x1 − x2)
2 + (y1 − y2)

2 > (t1 − t2)
2v2

1 ∨ t1 < t2
)

∧
(

(x1 − x2)
2 + (y1 − y2)

2 > (t1 − t2)
2v2

2 ∨ t2 < t1
)

is satisfied.

This assumption implies that at t1 and t2 neither radius is larger than or
equal to the distance between the two cone centers. So, at first the two circles
are disjoint and after growing for some time they intersect in one point. We
call the first (in time) time-space point where the two circles touch in a single
point, and thus for which the sum of the two radii is equal to the distance
between the two centers the initial contact of the two cones C−(t1, x1, y1, v1)
and C−(t2, x2, y2, v2). It is the unique point (t, x, y) that satisfies the formula

ψIC−(t, x, y, t1, x1, y1, v1, t2, x2, y2, v2) := t1 ≤ t ∧ t2 ≤ t ∧
(x− x1)

2 + (y − y1)
2 = (t− t1)

2v2
1 ∧

(x− x2)
2 + (y − y2)

2 = (t− t2)
2v2

2 ∧
((t− t1)v1 + (t− t2)v2)

2 = (x1 − x2)
2 + (y1 − y2)

2.

The initial contact of two cones C+(t1, x1, y1, v1) and C+(t2, x2, y2, v2) is
given by the formula ψIC+(t, x, y, t1, x1, y1, v1, t2, x2, y2, v2) that we obtain
from ψIC− by replacing (t1 ≤ t ∧ t2 ≤ t) with (t ≤ t1 ∧ t ≤ t2).

ψIC+(t, x, y, t1, x1, y1, v1, t2, x2, y2, v2) := t ≤ t1 ∧ t ≤ t2 ∧
(x− x1)

2 + (y − y1)
2 = (t− t1)

2v2
1 ∧

(x− x2)
2 + (y − y2)

2 = (t− t2)
2v2

2 ∧
((t− t1)v1 + (t− t2)v2)

2 = (x1 − x2)
2 + (y1 − y2)

2.

We denote the singleton sets containing the initial contacts by IC(C−(t1,
x1, y1, v1),C

−(t2, x2, y2, v2)) and IC(C+(t1, x1, y1, v1),C
+(t2, x2, y2, v2)).

From the last equation in of the system in ψIC− and ψIC+ , we easily obtain

t =

√

(x1 − x2)2 + (y1 − y2)2 + t1v1 + t2v2
v1 + v2

.

To compute the other two coordinates (x, y) of the initial contact, we
observe that, in the plane t = (

√

(x1 − x2)2 + (y1 − y2)2+t1v1+t2v2)/(v1+v2),
it lies on the line segment bounded by (x1, y1) and (x2, y2) and that its distance
from (x1, y1) equals v1(t− t1) and its distance from (x1, y1) equals v2(t− t2).

62 The alibi query

����

initial contact

(t2, x2, y2)
(t1, x1, y1)

v2(t− t2)

v1(t− t1)

(x1, y1)

(x2, y2)

(t, x, y)

Figure 4.6: Intersecting cones and their initial contact (3-dimensional view on
the left and 2-dimensional view from above on the right).

We can conclude that the initial contact has (t, x, y)-coordinates given by the
following system of equations

t =

√
(x1−x2)2+(y1−y2)2+t1v1+t2v2

v1+v2

x = x1 + v1(t− t1)
x2−x1√

(x2−x1)2+(y2−y1)2

y = y1 + v1(t− t1)
y2−y1√

(x2−x1)2+(y2−y1)2
.

The point in the singleton set IC(C+(t1, x1, y1, v1),C
+(t2, x2, y2, v2)) has

similar coordinates,

t =

√
(x1−x2)2+(y1−y2)2+t1v1+t2v2

v1+v2

x = x1 + v1(t1 − t) x2−x1√
(x2−x1)2+(y2−y1)2

y = y1 + v1(t1 − t) y2−y1√
(x2−x1)2+(y2−y1)2

.

This means that we can give more explicit descriptions to replace ψIC−

and ψIC+ .

4.2.5 An analytic solution to the alibi query

In this section, we first describe the solution to the alibi query on a geometric
level. Next, we prove its correctness and transform it into an analytic solution
and finally we show how to construct a quantifier-free first-order formula from
the analytic solution.

4.2. The alibi query in dimension two 63

4.2.5.1 Preliminary geometric considerations

Figure 4.7: One space-time prism is contained in the other.

The solution we present is based on the observation that the two main
cases of intersection (that do not exclude each other) are: (1) an apex of
one space-time prism is in the other; and (2) the mantels of the space-time
prisms intersect. This follows from the fact that intersection either means
containment or a proper intersection where the borders of the sets intersect.

The inclusion of one space-time prism in the other, illustrated in Figure 5.4,
is an example of the first case. It is clear that if no apex is contained in another
space-time prism and we still assume that the space-time prisms intersect, than
their mantels must intersect. We show this more formally in Lemma 4.1. In
this second case, the idea is to find a special point (a witness point) that is
easily computable and necessarily in the intersection.

Let us consider two space-time prisms P(t1, x1, y1, t
′
1, x

′
1, y

′
1, v1) and P(t2,

x2, y2, t
′
2, x

′
2, y

′
2, v2) with bottom cones C−(t1, x1, y1, v1) and C−(t2, x2, y2, v2)

and let us assume that none of the apices is inside the other cone. One
special point is the point of initial contact IC(C−(t1, x1, y1, v1),C

−(t2, x2, y2,
v2)). However, this point can not be guaranteed to be in the intersection if the
mantels of the two space-time prisms intersect, as we will show in the following
example. Consider two space-time prisms P(0, 0, 0, 4, 0, 0, 1) and P(0, 2, 0, 4,
2, 0, 1) with bottom cones C−(0, 0, 0, 1) and C−(0, 2, 0, 1). The intersection is
a hyperbola in the plane x = 1 with equation t2 − y2 = 1. The initial contact
of the two bottom cones is the point (1, 0, 1). To show that this point of initial
contact does not need to be in the intersection of the two space-time prisms,
the idea is to cut this point out of the intersection as follows. Suppose one
space-time prism has apexes, (0, 0, 0) and (a, b, c) and speed 1. The plane in
which its rim lies is given by −2ax+ a2 − 2by + b2 + 2ct− c2 = 0. This plane
cuts the plane α given by the equality x = 1 in a line given by the equation
−2by + 2ct − 2a + a2 − c2 = 0. Clearly, we can choose (a, b, c) such that the

64 The alibi query

��

����

��

�
�
�
�

Figure 4.8: Clean cut between cones.

line contains the points
(√

5
2 , 1,

1
2

)

and
(√

2, 1, 1
)

. Everything below this line

will be part of the first space-time prism and the second cone, but the initial
contact is situated above the line, effectively cutting it out of the intersection.
All this is illustrated in Figure 4.9.

We notice how the plane in which the rim lies and the rim itself is the evil
do-er. If neither rim intersects the mantel of the other space-time prism, then
the intersection of mantels is the same as an intersection of cones. In which
case the initial contact will not be cut out and can be used to determine if
there is intersection in this manner.

Using contraposition on the statement in the previous paragraph we get:
if there is an intersection and no initial contact is in the intersection then a
rim must intersect the other space-time prism’s mantel.

To verify intersection with the apexes and initial contacts is straightfor-
ward. Verifying if a rim intersects a mantel results in solving a quartic polyno-
mial equation in one variable and verifying the solution in a single inequality
in which no variable appears with a degree higher than one.

4.2.5.2 Outline of the solution

Suppose, for the remainder of this section, we wish to verify if the space-
time prisms P1 = P(t1, x1, y1, t2, x2, y2, v1) and P2 = P(t3, x3, y3, t4, x4, y4, v2)
intersect. Moreover, we assume the space-time prisms are non-empty, i.e., the
system

{

(x2 − x1)
2 + (y2 − y1)

2 ≤ (t2 − t1)
2v2

1

(x4 − x3)
2 + (y4 − y3)

2 ≤ (t4 − t3)
2v2

2

4.2. The alibi query in dimension two 65

initial contact

α ↔ x = 1

α

−2by + 2ct − 2a + a2
− c2 = 0

Figure 4.9: The initial contact cut out.

is satisfiable.

We first observe that an intersection between space-time prisms can be
classified into three, mutually exclusive, cases. The three cases then are:

• Case I: an apex of one space-time prism is contained in the other, i.e.,

τP1 ∩ P2 6= ∅ or P1 ∩ τP2 6= ∅;

• Case II: not Case I, but the rim of one space-time prism intersects the
mantel of the other, i.e.,

ρP1 ∩ ∂P2 6= ∅ or ρP2 ∩ ∂P1 6= ∅;

66 The alibi query

• Case III: not Case I and not Case II and the initial contact of the
upper or lower cones is in the intersection of the space-time prisms, i.e.,

IC(C−
1 ,C

−
2) ⊂ P1 ∩ P2 or IC(C+

1 ,C
+
2) ⊂ P1 ∩ P2.

If none of these three cases occur then the space-time prisms do not inter-
sect, as we show in the correctness proof below. First, we give the following
geometric lemma.

Lemma 4.1. If P1 ∩ P2 6= ∅, τP1 ∩ P2 = ∅ and τP2 ∩ P1 = ∅, then
∂P1 ∩ ∂P2 6= ∅.

Proof. From the assumptions, we know there is a point p1 in P2, in particular
e.g., an apex of P2, that is not in P1. Also, there is a point p2 that is in P2 and
in P1. The line segment bounded by p1 and p2 lies in P2, since P2 is convex.
The line segment cuts the mantel of P1 since p2 is inside P1 and p1 is not. Let
p be this point where the segment bounded by p1 and p2 intersects ∂P1. This
point lies either on the upper-half space-time prism P+

1 or on the bottom-half
space-time prism P−

1 . Let r be the apex of this half space-time prism. Since
p is inside P2 and r is not, the line segment bounded by p and r must cut
∂P2 in a point q. This point lies of course on ∂P2 and on ∂P1 since the line
segment bounded by p and r is a part of ∂P1. Hence their mantels must have a
non-empty intersection if the space-time prisms have a non-empty intersection
and neither space-time prism contains the apexes of the other.

Now, we show that if P1 and P2 intersect and neither Case I, nor Case II
occurs, then Case III occurs.

Theorem 4.2. If P1 ∩ P2 6= ∅, τP1 ∩ P2 = ∅, P1 ∩ τP2 = ∅, ρP1 ∩ ∂P2 = ∅
and ρP2 ∩ ∂P1 = ∅, then IC(C−

1 ,C
−
2) ⊂ P1 ∩ P2 or IC(C+

1 ,C
+
2) ⊂ P1 ∩ P2.

Proof. Let P1 and P2 be the space-time prisms P1 = P(t1, x1, y1, t2, x2, y2, v1)
and P2 = P(t3, x3, y3, t4, x4, y4, v2).

Let us assume that the hypotheses of the statement of the theorem is true.
It is sufficient to prove that either C−

1 ∩C−
2 ⊂ P−

1 ∩P−
2 or C+

1 ∩C+
2 ⊂ P+

1 ∩P+
2 .

We will split the proof in two cases. From the fourth and fifth hypotheses
it follows that either (1) ρP1 ⊂ P2 or ρP2 ⊂ P1; or (2) ρP1 ∩ P2 = ∅ and
ρP2 ∩ P1 = ∅.
Case (1): We assume ρP2 ⊂ P1 (the case ρP1 ⊂ P2 is completely analo-
gous). We prove C−

1 ∩ C−
2 ⊂ P−

1 ∩ P−
2 (the case for upper cones is completely

analogous). The following argument is illustrated in Figure 4.10.
Since ρP2 ⊂ P1, we know that ρP2 is inside C−

1 , and (t3, x3, y3) is outside.
We can show that v2 < v1. Consider the plane spanned by the two axis of

4.2. The alibi query in dimension two 67

symmetry of both C−
1 and C−

2 . Both C−
1 and C−

2 intersect this plane in two
half lines each. Moreover, we know that C−

1 intersects the axis of symmetry of
C−

2 . Let t0 be the moment at which this happens. Obviously t0 > t1, but we
also know t0 > t3 since (t3, x3, y3) is outside C−

1 . We have that v1(t0 − t1) =
√

(x1 − x3)2 + (y1 − y3)2. Since ρP2 is inside C−
1 and (t3, x3, y3) is outside,

this means both half lines from C−
2 intersect the half lines from C−

1 . Let t′0 and
t′′0 be the moments in time at which this happens and let t′0 > t′′0. We have
again that t′0 > t1 and t′0 > t3. Then v1(t

′
0 − t1) =

√

(x1 − x3)2 + (y1 − y3)2 +
v2(t

′
0 − t3) if and only if v1(t

′
0 − t0) = v2(t

′
0− t3). Since t0 > t3, we get v2 < v1.

This is depicted in Figure 4.10.

t′0

t0

t′′0

t1

t3

t

Figure 4.10: Illustration to the proof.

It follows that every straight half line starting in (t3, x3, y3) on C−
2 intersects

C−
1 between (t3, x3, y3) and ρP2, since ρP2 is inside C−

1 , and (t3, x3, y3) is
outside. We also know that this line does not intersect C−

1 beyond ρP2 since the
cone C−

2 is entirely inside C−
1 beyond the rim ρP2. Therefore, C−

1 ∩C−
2 ⊂ P−

2 .

Clearly, P−
2 intersects P−

1 since it can not intersect P+
1 . We know C−

1 ∩
∂P−

2 is a closed continuous curve that lies entirely in C−
1 . This curve is also

contained in P−
1 . Indeed, if we assume this is not the case, then it intersects

the plane in which ρP1 lies, and hence it intersects ρP1 itself, contradicting
the assumption ρP1 ∩ ∂P2 = ∅.
Case (2): Now assume ρP1 ∩ P2 = ∅ and ρP2 ∩ P1 = ∅. Clearly, v1 can not
be equal to v2, otherwise the depicted intersection can not occur. So suppose
without loss of generality that v2 < v1. Now either P−

2 intersects both P−
1

and P+
1 or P+

2 intersects both P−
1 and P+

1 . These cases are mutually exclusive
because of the following. If P+

2 intersects P+
1 , then ρP2 is inside C+

1 , likewise if

68 The alibi query

P−
2 intersects P−

1 , then ρP2 is inside C−
1 . Hence ρP2 ⊂ P1, which contradicts

our hypothesis. If P+
2 intersects P−

1 , then ρP2 must be outside C−
1 and thus

P−
2 must be as well, hence P−

2 intersects neither P−
1 nor P+

1 . Likewise, if P−
2

intersects P+
1 , then P+

2 can not intersect P1.

To prove that, “if P−
2 intersects P−

1 , then it also intersects P+
1 and if P−

2

intersects P+
1 , then it also intersects P−

1 ”, we proceed as follows (the case for
P+

2 is analogous). Suppose P−
2 intersects P−

1 , then P−
2 ∩ P−

1 ⊂ P1, but ρP2

is outside P1, that means P−
2 must intersect P+

1 since it can not intersect
P−

1 anymore. This is the “what goes in must come out”-principle. Likewise,
suppose P−

2 intersects P+
1 , then P−

2 ∩ P+
1 ⊂ P1, but (t3, x3, y3) is outside P1,

that means P−
2 must intersect P−

1 since it can not intersect P−
1 anymore.

So suppose now that P−
2 intersects both P−

1 and P+
1 (the case for P+

2 is
completely analogous). If P−

2 intersects P−
1 , that means ρP2 is completely

inside C−
1 and therefore that C−

1 ∩C−
2 ⊂ P−

2 . We proceed like in the first case,
we know that C−

1 ∩ P−
2 is a closed continuous curve. This curve lies entirely

in C−
1 . If this curve is not entirely in P−

1 that means it intersects the plane in
which ρP1 lies, and hence intersects ρP1 itself. But this is contradictory to
the assumption that ρP1 ∩ ∂P2 = ∅.

Figure 4.11: Case II is not redundant: P(0, 0, 0, 2, 0, 2, 1.9) and P(0, 3, 0, 2, 3,
2, 1.9) seen from the side and from the top.

In Theorem 4.2, we proved that if there is an intersection and neither rim
cuts the other space-time prism’s mantel and neither apex of a space-time
prism is contained in the other then there must be an initial contact in the
intersection. Visualizing how space-time prisms intersect might tempt one
to think there is always an initial contact in the intersection. There exist
counterexamples in which there is an intersection and no initial contact is in
that intersection. That means case Case II is not redundant. This situation

4.2. The alibi query in dimension two 69

is depicted in Figure 4.11. The space-time prisms are P(0, 0, 0, 2, 0, 2, 1.9) and
P(0, 3, 0, 2, 3, 2, 1.9).

Figure 4.12: Intersection of Figure 4.11 with the plane y = 0 (left) and with
the plane y = 3 (right).

It is clear that the initial contact of the bottom cones lies in the plane
spanned by the axis of symmetry of those bottom cones, in this case this is
the plane y = 0. The intersection of Figure 4.11 can be seen in Figure 4.12
on the left, where the two space-time prisms clearly have no intersection and
thus no initial contact in the intersection.

In the case of the upper cones the initial contact must lie in the plane
y = 3. The intersection of Figure 4.11 can be seen in Figure 4.12 on the right,
where the two space-time prisms clearly have no intersection and there is again
no initial contact in the intersection.

This concludes the outline.

Now we translate the three cases, Case I, Case II and Case III, into ana-
lytical formulas.

4.2.5.3 A formula for Case I

In Case (I), we verify whether τP1 ∩ P2 6= ∅ or P1 ∩ τP2 6= ∅. To check if
that is the case we merely need to verify if one of the apexes satisfies the set
of equations of the other space-time prism. In this way we obtain

ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) :=

ψP (t3, x3, y3, t1, x1, y1, t2, x2, y2, v1) ∨
ψP (t4, x4, y4, t1, x1, y1, t2, x2, y2, v1) ∨
ψP (t1, x1, y1, t3, x3, y3, t4, x4, y4, v2) ∨

ψP (t2, x2, y2, t3, x3, y3, t4, x4, y4, v2) .

For the following sections, Cases II and III, we assume that the apex sets
of the space-time prisms are not singletons, i.e., t1 < t2 and t3 < t4.

70 The alibi query

4.2.5.4 A formula for Case II

Now, let us assume that ΦI from the previous section failed. We note that we
can always apply a speed-preserving transformation to R×R2 to obtain eas-
ier coordinates. We can always find a transformation such that (t′1, x

′
1, y

′
1) =

(0, 0, 0) and that the line-segment connecting (t′1, x
′
1, y

′
1) and (t′2, x

′
2, y

′
2) is per-

pendicular to the y-axis, i.e., y′2 = 0. This transformation is a composition
of a translation of R × R2, a spatial rotation of R2 and a scaling of R× R2,
see Chapter 3. Let the coordinates without a prime be the original set, and
let coordinates with a prime be the image of the same coordinates without a
prime under this transformation. We note that we do not need to transform
back because the query is invariant under such transformations, as we proved
in Chapter 3. The following formula returns the transformed coordinates
(t′, x′, y′) of (t, x, y) given the points (t1, x1, y1) and (t2, x2, y2):

ϕA(t1, x1, y1, t2, x2, y2, t, x, y, t
′, x′, y′) :=

(

y2 = y1 ∧ t′ = (t− t1) ∧ x′ = (x− x1) ∧ y′ = (y − y1)
)

∨
(

y2 6= y1 ∧ t′ = (t− t1)
√

(x2 − x1)2 + (y2 − y1)2

∧ x′ = (x− x1)(x2 − x1) + (y − y1)(y2 − y1)

∧ y′ = (x− x1)(y1 − y2) + (y − y1)(x2 − x1)
)

.

The translation is over the vector (−t1,−x1,−y1), the rotation over minus
the angle that (t2 − t1, x2 − x1, y2 − y1) makes with the x-axis, and a scaling
by a factor

√

(x2 − x1)2 + (y2 − y1)2. We note that the rotation and scaling
only need to occur if y2 is not already in place, i.e., if y2 6= y1.

The formula χ(t′1, x
′
1, y

′
1, t1, x1, y1, t

′
2, x

′
2, y

′
2, t2, x2, y2, t

′
3, x

′
3, y

′
3, t3, x3, y3, t

′
4,

x′4, y
′
4, t4, x4, y4) is an abbreviation for

ϕA(t1, x1, y1, t2, x2, y2, t1, x1, y1, t
′
1, x

′
1, y

′
1) ∧

ϕA(t1, x1, y1, t2, x2, y2, t2, x2, y2, t
′
2, x

′
2, y

′
2) ∧

ϕA(t1, x1, y1, t2, x2, y2, t3, x3, y3, t
′
3, x

′
3, y

′
3) ∧

ϕA(t1, x1, y1, t2, x2, y2, t4, x4, y4, t
′
4, x

′
4, y

′
4).

This transformation yields some simple equations for the rim ρP1:

x2 + y2 = t2v2
1

2x(−x′2) + x′22 = v2
1(2t(−t′2) + t′22)

0 ≤ t ≤ t′2 .

4.2. The alibi query in dimension two 71

Not only that, but with these equations we can deduce a simple parametriza-
tion in the x-coordinate for the rim,

t =
2xx′

2−x′2
2 +v2

1t′22
2v2

1t′2

y = ±
√

v2
1

(

2xx′
2−x′2

2 +v2
1t′22

2v2
1t′2

)2
− x2

0 ≤ t ≤ t′2 .

We remark that this implies t′2 6= 0 and v1 6= 0. If t′2 = 0, then P1 is
a point, hence degenerate. If v1 = 0, then P1 is a line segment, and again
degenerate. Next we will inject these parameterizations in the constraints for
∂P+

2 and ∂P−
2 separately. The constraints for ∂P−

2 are

(x− x′3)
2 + (y − y′3)

2 = (t− t′3)
2v2

2

2x(x′3 − x′4) + x′24 − x′23 + 2y(y′3 − y′4) + y′24 − y′23
≤ v2

2

(

2t(t′3 − t′4) + t′24 − t′23
)

t′3 ≤ t ≤ t′4 .

We will explain how to proceed to compute the intersection with ∂P−
2 and

simply reuse formulas for intersection with ∂P+
2 . We insert our expressions

for x and y in the first equation. This is equivalent to computing intersections
of ρP1 with C−

2 and gives

(

x− x′3
)2

+

±
√

v2
1

(

2xx′2 − x′22 + v2
1t

′2
2

2v2
1t

′
2

)2

− x2 − y′3

2

=

(

2xx′2 − x′22 + v2
1t

′2
2

2v2
1t

′
2

− t′3

)2

v2
2 ,

or equivalently

±2y′3

√

v2
1

(

2xx′2 − x′22 + v2
1t

′2
2

)2 −
(

2v2
1t

′
2

)2
x2 =

(

2xx′2 − x′22 + v2
1t

′2
2 −

(

2v2
1t

′
2

)

t′3
)2
v2
2 −

(

2v2
1t

′
2

)2
(x− x′3)

2

−
(

2v2
1t

′
2

)2
y′23 −

(

v2
1

(

2xx′2 − x′22 + v2
1t

′2
2

)2 −
(

2v2
1t

′
2

)2
x2
)

or equivalently

±v12y′3
√

x24
(

x′22 − v2
1t

′2
2

)

+ x4x′22
(

v2
1t

′2
2 − x′22

)

+
(

v2
1t

′2
2 − x′22

)2
=

x24x′22 v
2
2 − x24x′22 v

2
1 + x4

(

− x′22 v
2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)

72 The alibi query

+ 2v4
1t

′2
2 x

′
3 + v2

1x
′
2

(

v2
1t

′2
2 − x′22

))

+
(

v2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)2

− 4v4
1t

′2
2

(

x′23 + y′23
)

− v4
1

(

−x′22 + v2
1t

′2
2

))

.

By squaring left and right hand in this last expression, we rid ourselves of
the square root and obtain the following polynomial equation of degree four.
Squaring may create new solutions, so to ensure we only get useful solutions,
we have to add the condition that the square root exists. This is the case if
and only if

φ
√

(x, t′2, x
′
2, v1) :=

x24
(

x′22 − v2
1t

′2
2

)

+ x4x′22
(

v2
1t

′2
2 − x′22

)

+
(

v2
1t

′2
2 − x′22

)2 ≥ 0

is satisfied.

We notice that if P1 is degenerate, i.e., x′22 = v2
1t

′2
2 , then the square root

vanishes and the polynomial in φ4 is the square of a polynomial of degree two,
yielding to at most two roots and intersection points as we expect. The case
were v1 = 0 is captured by the formula in the next section, that is why we
leave that case out here and demand that v1 6= 0. So the following still works
if one or both space-time prisms is degenerate:

φ4(x, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2) :=

∃a∃b∃c∃d∃e
(

ax4 + bx3 + cx2 + dx+ e = 0 ∧ a =
(

4x′22
(

v2
2 − v2

1

))2

∧ b = −32x′42 v
2
2

(

v2
2 − v2

1

) (

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3 + 2v4

1t
′2
2 x

′
3

+v2
1x

′
2

(

v2
1t

′2
2 − x′22

))

∧ c = 8
(

x′22 − v2
1t

′2
2

) (

−4v4
1t

′2
2

(

x′23 + y′23
)

+v2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)2 − v4
1

(

−x′22 + v2
1t

′2
2

)

)

+
(

2v1y
′
3

)2 (
x′22 − v2

1t
′2
2

)

+
(

4
(

− x′22 v
2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)

+ 2v4
1t

′2
2 x

′
3 + v2

1x
′
2

(

v2
1t

′2
2 − x′22

)))2 ∧ d = 8
(

2v4
1t

′2
2 x

′
3 −

x′22 v
2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)

+ v2
1x

′
2

(

v2
1t

′2
2 − x′22

))

(

v2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)2 − 4v4
1t

′2
2

(

x′23 + y′23
)

− v4
1

(

−x′22 + v2
1t

′2
2

))

+
(

2v1y
′
3

)2 (
4x′22

(

v2
1t

′2
2 − x′22

))

∧ e =
(

2v1y
′
3

)2 (
v2
1t

′2
2 − x′22

)2
+
(

− 4v4
1t

′2
2

(

x′23 + y′23
)

+ v2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)2 − v4
1

(

−x′22 + v2
1t

′2
2

))2
)

.

The quantifiers, we introduced here, are only in place for esthetical con-
siderations and can be eliminated by direct substitution.

4.2. The alibi query in dimension two 73

We note that if v1 = v2, we get polynomials of degree merely two. This
can be solved in an exact manner using nested square roots (or Maple if you
want). This gives us at most four values for x. Let

φroots(xa, xb, xc, xd, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2)

be a formula that returns all four real roots, if they exist, that satisfy both
φ4(x, t

′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2) and φ

√
(x, t′2, x

′
2, v1). We substitute these values

in the parameter equations of ρP1. By substituting these in the last equation
above, we can determine the sign of the square root we need to take for y. A
point (t, x, y) satisfies the following formula is a point on ρP1, but instead of
using the square root for y, we use an expression from above to get the correct
sign for the square root if y′3 6= 0. If y′3 = 0 we have to use the square root
expression and then it does not matter which sign the square root has; we
need both:

ψρ(t, x, y, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2) :=

(

y′3 6= 0 ∧ t
(

2v2
1t

′
2

)

= 2xx′2 − x′22 + v2
1t

′2
2 ∧ 2y′3

(

2v2
1t

′
2

)

y =
(

2xx′2 − x′22 + v2
1t

′2
2 −

(

2v2
1t

′
2

)

t′3
)2
v2
2 −

(

2v2
1t

′
2

)2
(x− x′3)

2

−
(

2v2
1t

′
2

)2
y′23 −

(

v2
1

(

2xx′2 − x′22 + v2
1t

′2
2

)2 −
(

2v2
1t

′
2

)2
x2
)

∧ 0 ≤ t ≤ t′2
)

∨
(

y′3 = 0 ∧ t
(

2v2
1t

′
2

)

= 2xx′2 − x′22 + v2
1t

′2
2

∧ 0 ≤ t ≤ t′2 ∧
(

2v2
1t

′
2

)2
y2 =

(

2xx′2 − x′22 + v2
1t

′2
2

)2 −
(

2v2
1t

′
2

)2
x2
)

.

The four roots give us four time-space points on ρP1 ∩ C−
2 . In order for

these points (t, x, y) to be in ρP1 ∩ ∂P−
2 , they need to satisfy

ψ−(t, x, y, t′3, x
′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) :=

2x(x′3 − x′4) + x′24 − x′23 + 2y(y′3 − y′4) + y′24 − y′23
≤ v2

2

(

2t(t′3 − t′4) + t′24 − t′23
)

.

This formula returns true if (t, x, y) lies in the same half space as the bottom-
half space-time prism.

The formula ψ+ returns true if (t, x, y) lies in the same half space as the
upper-half space-time prism, i.e.,

ψ+(t, x, y, t′3, x
′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) := ψ−(t, x, y, t′4, x

′
4, y

′
4, t

′
3, x

′
3, y

′
3, v2).

By combining ψρ(t, x, y, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2) and ψ−(t, x, y, t̂, x̂, ŷ, t̃, x̃, ỹ,

v), we get a formula that decides the emptiness of the intersection ρP1 ∩ ∂P−
2

in terms of a parameter x:

ψρ∩∂±(x, t′2, x
′
2, v1, t

′
3, x

′
3, y

′
3, v2, t̂, x̂, ŷ, t̃, x̃, ỹ, v) :=

74 The alibi query

C−
2

ρP1 P−
2

Figure 4.13: The rim intersects the cone and solutions are verified in a half-
space.

∃y
(

y′3 = 0 ∧ y2
(

2v2
1t

′
2

)2
=
(

2xx′2 − x′22 + v2
1t

′2
2

)2
v2
1 −

(

2v2
1t

′
2

)2
x2
)

∨
(

y′3 6= 0 ∧ 2y′3
(

2v2
1t

′
2

)

y =
(

2xx′2 − x′22 + v2
1t

′2
2 −

(

2v2
1t

′
2

)

t′3
)2
v2
2−

(

2v2
1t

′
2

)2
(x− x′3)

2 −
(

v2
1

(

2xx′2 − x′22 + v2
1t

′2
2

)2 −
(

2v2
1t

′
2

)2
x2
)

−
(

2v2
1t

′
2

)2
y′23
)

∧
(

2x(x̂− x̃) + x̃2 − x̂2 + 2y(ŷ − ỹ) + ỹ2

− ŷ2
) (

2v2
1t

′
2

)

≤ v2
(

2
(

2v2
1t

′
2

) (

2xx′2 − x′22 + v2
1t

′2
2

)

(t̂− t̃)

+
(

2v2
1t

′
2

) (

t̃2 − t̂2
))

∧ 0 ≤ t′2
(

2xx′2 − x′22 + v2
1t

′2
2

)

≤ 2v2
1t

′3
2

∧
(

t̂
(

2v2
1t

′2
2

)

≤ t′2
(

2xx′2 − x′22 + v2
1t

′2
2

)

≤ t̃
(

2v2
1t

′2
2

)

∨ t̃
(

2v2
1t

′2
2

)

≤ t′2
(

2xx′2 − x′22 + v2
1t

′2
2

)

≤ t̂
(

2v2
1t

′2
2

))

.

We are ready now to construct the formula that decides if ρP1 and P−
2

have a non-empty intersection:

ϕ
ρ1∩∂−

2
(t′2, x

′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) :=

∃x∃xa∃xb∃xc∃xd (φroots(xa, xb, xc, xd, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2)

∧ (x = xa ∨ x = xb ∨ x = xc ∨ x = xd)

∧ ψρ∩∂±(x, t′2, x
′
2, v1, t

′
3, x

′
3, y

′
3, v2, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v

′
2)
)

.

The formula that decides if ρP1 intersects ∂P+
2 looks strikingly similar:

ϕ
ρ1∩∂+

2
(t′2, x

′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) :=

∃x∃xa∃xb∃xc∃xd

(

φroots(xa, xb, xc, xd, t
′
2, x

′
2, v1, t

′
4, x

′
4, y

′
4, v2)

∧ (x = xa ∨ x = xb ∨ x = xc ∨ x = xd)

∧ ψρ∩∂±(x, t′2, x
′
2, v1, t

′
4, x

′
4, y

′
4, v2, t

′
4, x

′
4, y

′
4, t

′
3, x

′
3, y

′
3, v

′
2)
)

.

The quantifiers introduced here can also be eliminated in a straightforward
manner. Notice that φroots acts as a function rather than a formula that inputs
(t′2, x

′
2, v1, t

′
4, x

′
4, y

′
4, v2) to construct a polynomial of degree four and returns

the four roots (xa, xb, xc, xd), if they exist, of that polynomial. The existential

4.2. The alibi query in dimension two 75

quantifier for the variable x is used to cycle through those roots to see if any
of them identifies a witness to the alibi query. Finally, we are ready to present
the formula for Case II:

ΦII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) :=

¬ ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) ∧
(v1 > 0 ∧ v2 > 0) ∧ ∃t′1∃x′1∃y′1∃t′2∃x′2∃y′2∃t′3∃x′3∃y′3∃t′4∃x′4∃y′4
(

χ(t′1, x
′
1, y

′
1, t1, x1, y1, t

′
2, x

′
2, y

′
2, t2, x2, y2, t

′
3, x

′
3, y

′
3, t3, x3, y3,

t′4, x
′
4, y

′
4, t4, x4, y4) ∧

(

ϕ
ρ1∩∂−

2
(t′2, x

′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v

′
2) ∨

ϕ
ρ1∩∂+

2
(t′2, x

′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2)

)

∨ χ(t′3, x
′
3, y

′
3, t3, x3, y3,

t′4, x
′
4, y

′
4, t4, x4, y4, t

′
1, x

′
1, y

′
1, t1, x1, y1, t

′
2, x

′
2, y

′
2, t2, x2, y2)

∧
(

ϕ
ρ1∩∂−

2
(t′3, x

′
3, v2, t

′
1, x

′
1, y

′
1, t

′
2, x

′
2, y

′
2, v

′
1)

∨ ϕ
ρ1∩∂+

2
(t′3, x

′
3, v2, t

′
1, x

′
1, y

′
1, t

′
2, x

′
2, y

′
2, v

′
1)
))

.

The reader may notice that a lot of quantifiers have been introduced in
the formula above. These quantifiers are merely there to introduce easier
coordinates and can be straightforwardly computed (and eliminated) by the
formula χ and hence the formula ϕA(t1, x1, y1, t2, x2, y2, t, x, y, t

′, x′, y′). The
latter actually acts like a function, parameterized by (t1, x1, y1, t2, x2, y2), that
has input (t, x, y) and returns (t′, x′, y′).

4.2.5.5 A formula for Case III

Here, we assume that both ϕI and ϕII fail. So, there is no apex contained
in the other space-time prism and neither rim cuts the mantel of the other
space-time prism.

As we proved in Theorem 4.2, the intersection of two half space-time prisms
will reduce to the intersection of two cones and that means there is an initial
contact that is part of the intersection. To verify if this is the case, we compute
the two initial contacts and verify if they are effectively part of the intersection.

Using the expression for the initial contact IC(C−
1 ,C

−
2), we computed in

Section 4.2.4.2, we can construct a formula that decides if it is part of P−
1 ∩P−

2 .
We will recycle the formulas ψ− from the previous section to construct an
expression without the need for extra variables. The following formula that
returns true if ψ−(t0, x0, y0, t

′, x′, y′, t̂, x̂, ŷ, v) is satisfied where IC(C−
1 ,C

−
2) =

(t0, x0, y0):

φ−(t1, x1, y1, v1, t3, x3, y3, v2, t
′, x′, y′, t̂, x̂, ŷ, v) :=

(

(x1v2 + x3v1)
√

(x1 − x3)2 + (y1 − y3)2 + v1 ((t3 − t1)v2) (x3 − x1)
)

76 The alibi query

2(x′ − x̂) + 2(y′ − ŷ)
(

(y1v2 + y3v1)
√

(x1 − x3)2 + (y1 − y3)2

+ v1 ((t3 − t1)v2) (y3 − y1)
)

+
√

(x1 − x3)2 + (y1 − y3)2

(v1 + v2)
(

x̂2 − x′2 + ŷ2 − y′2
)

≤ v2
((

t̂2 − t′2
)

(v1 + v2)

+ 2
(

√

(x1 − x3)2 + (y1 − y3)2 + t1v1 + t3v2

)

(

t′ − t̂
))

√

(x1 − x3)2 + (y1 − y3)2.

The following formula expresses that the time coordinate t0 of IC(C−
1 ,C

−
2)

satisfies the constraints t′ ≤ t ≤ t′′ and t̂ ≤ t ≤ ť:

ψt

(

t1, x1, y1, v1, t3, x3, y3, v2, t
′, t′′, t̂, ť

)

:=

t′(v1 + v2) ≤
√

(x1 − x3)2 + (y1 − y3)2 + t1v1 + t3v2 ≤ t′′(v1 + v2)

∧ t̂(v1 + v2) ≤
√

(x1 − x3)2 + (y1 − y3)2 + t1v1 + t3v2 ≤ ť(v1 + v2).

Now, IC(C−
1 ,C

−
2) ⊂ P−

1 ∩ P−
2 if and only if ψIC−(t1, x1, y1, t2, x2, y2, v1, t3,

x3, y3, t4, x4, y4, v2) is satisfied where

ψIC−(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) :=

ψt(t1, x1, y1, v1, t3, x3, y3, v2, t1, t2, t3, t4) ∧
φ−(t1, x1, y1, v1, t3, x3, y3, v2, t1, x1, y1, t2, x2, y2, v1)

∧ φ−(t1, x1, y1, v1, t3, x3, y3, v2, t3, x3, y3, t4, x4, y4, v2)

and IC(C+
1 ,C

+
2) ⊂ P+

1 ∩P+
2 if and only if ψIC+(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3,

t4, x4, y4, v2) is satisfied where

ψIC+(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) :=

ψt(t2, x2, y2, v1, t4, x4, y4, v2, t1, t2, t3, t4) ∧
φ−(t2, x2, y2, v1, t4, x4, y4, v2, t2, x2, y2, t1, x1, y1, v1)

∧ φ−(t2, x2, y2, v1, t4, x4, y4, v2, t4, x4, y4, t3, x3, y3, v2).

The formula that expresses the criterium for Case III then looks as follows:

ΦIII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) := (v1 + v2 6= 0)

∧ ¬ ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)

∧ (ψIC−(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)

∨ ψIC+(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)) .

4.2.5.6 The formula for the parametric alibi query

The final formula that decides if two space-time prisms, P1 = P(t1, x1, y1, t2,
x2, y2, v1) and P2 = P(t3, x3, y3, t4, x4, y4, v2), do not intersect looks as follows

ψalibi (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) := ¬ ((t1 < t2 ∧ t3 < t4)

4.2. The alibi query in dimension two 77

∧ (ΦIII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)

∨ ΦII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2))

∨ ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)) .

4.2.6 Experiments

In this section, we compare our solution to the alibi query (using the for-
mula given in Section 4.2.5.6) with the method of eliminating quantifiers of
Mathematica.

In the following table, it is clear that traditional quantifier elimination
performs badly on the example space-time prisms. Its running times highly
deviates from their average and range in the minutes. Whereas the method
described in this chapter performs in running times that consistently only
needs milliseconds or less. This shows our method is efficient and our claim,
that it runs in milliseconds or less, holds.

For this first test of space-time prisms we chose to verify intersection of
two oblique space-time prisms and the intersection of one oblique and one
straight space-time prism. The space-time prisms that actually intersected
had a remarkable low running time with Mathematica.

The space-time prisms The running times
P1 P2 Mathematica ψalibi

(0, 0, 0, 2, 0, 2, 1.9) (0, 3, 0, 2, 3, 2, 2) 0.656” 0.016”
(0, 0, 0, 2, 0, 2, 1.9) (0, 4, 0, 2, 4, 2, 2) 324.453” 0.063”
(0, 0, 0, 2, 0, 2, 1.9) (0, 3, 0, 2, 3, 0, 2) 0.438” 0.015”
(0, 0, 0, 2, 0, 2, 1.9) (0, 4, 0, 2, 4, 0, 2) 475.719” 0.031”

The type of space-time prisms in this second test are as in the first. How-
ever, these space-time prisms all have overlapping time intervals unlike the
first test, where the time intervals coincided.

The space-time prisms The running times
P1 P2 Mathematica ψalibi

(0, 0, 0, 2, 0, 2, 1.9) (1, 3, 0, 3, 3, 2, 2) 63.375” 0.078”
(0, 0, 0, 2, 0, 2, 1.9) (1, 4, 0, 3, 4, 2, 2) 59.485” 0.078”
(0, 0, 0, 2, 0, 2, 1.9) (1, 3, 0, 3, 3, 0, 2) 29.734” 0.031”
(0, 0, 0, 2, 0, 2, 1.9) (1, 4, 0, 3, 4, 0, 2) 27.281” 0.032”

The type of space-time prisms in this third test are as in the first. But this
time the time intervals are completely disjoint. Note that the running times
for Mathematica are more consistent in this test and the previous one.

78 The alibi query

The space-time prisms The running times
P1 P2 Mathematica ψalibi

(0, 0, 0, 2, 0, 2, 1.9) (3, 3, 0, 4, 3, 2, 2) 63.641” 0.046”
(0, 0, 0, 2, 0, 2, 1.9) (3, 4, 0, 4, 4, 2, 2) 61.781” 0.016”
(0, 0, 0, 2, 0, 2, 1.9) (3, 3, 0, 4, 3, 0, 2) 52.735” 0.031”
(0, 0, 0, 2, 0, 2, 1.9) (3, 4, 0, 4, 4, 0, 2) 56.875” 0.046”

After conducting numerous experiments, we have to conclude that there
is no consistent trend in the running times of the traditional method. The
only trend that showed is that the time the traditional quantifier-elimination
method takes is several orders of magnitude higher than our own method and
that our method runs consistently under a tenth of a second.

4.2.7 The alibi query at a fixed moment in time

4.2.7.1 Introduction

In this section, we present another example where an ad-hoc solution prevails
over the general quantifier-elimination methods. The problem is the following.
As in the previous setting, we have lists of time stamped-locations of two
moving objects and upper bounds on the object’s speed between time stamps.
We want to know if two objects may have met at a given moment in time.

For the remainder of this section, we reuse the assumptions from the
previous section. We want to verify if the space-time prisms P1 = P(t1,
x1, y1, t2, x2, y2, v1) and P2 = P(t3, x3, y3, t4, x4, y4, v2) intersect at a moment
in time t0. Moreover, we assume the space-time prisms are non-empty, i.e.,
(x2 −x1)

2 + (y2 − y1)
2 ≤ (t2 − t1)

2v2
1 and (x4 −x3)

2 + (y4 − y3)
2 ≤ (t4 − t3)

2v2
2

and that t1 ≤ t0 ≤ t2 and t3 ≤ t0 ≤ t4 are satisfied. This means we need to
eliminate the quantifiers in

∃x∃y
(

(x− x1)
2 + (y − y1)

2 ≤ v2
1(t0 − t1)

2

∧ (x− x2)
2 + (y − y2)

2 ≤ v2
1(t0 − t2)

2

∧ (x− x3)
2 + (y − y3)

2 ≤ v2
2(t0 − t3)

2

∧ (x− x4)
2 + (y − y4)

2 ≤ v2
2(t0 − t4)

2
)

.

Eliminating quantifiers gives us a formula that decide whether or not four
discs have a non-empty intersection. For ease of notation we will use the
following abbreviations: (x, y) ∈ Di if and only if (x−xi)

2 +(y− yi) ≤ r2i and
(x, y) ∈ Ci if and only if (x− xi)

2 + (y − yi) = r2i .

4.2.7.2 Main theorem

Using Helly’s theorem [14] we can simplify the problem even more.

4.2. The alibi query in dimension two 79

Theorem 4.3 (Helly). Let X1, . . . ,Xm be convex subsets of Rn where m > n.
If any n+ 1 of these subsets have a non-empty intersection, then

m
⋂

i=1

Xi 6= ∅.

For the plane, this means we only need to find a quantifier free-formula
that decides if three discs have a non-empty intersection. For the remainder of
this section assume that we want to verify whether D1∩D2∩D3 is non-empty.

Theorem 4.4. Three discs, D1, D2 and D3, have a non-empty intersection
if and only if one of the following cases occur:

(1) there is a disc whose center is in the other two discs; or

(2) the previous case does not occur and there exists a pair of discs for
which one of both intersection points of their bordering circles lies in the
remaining disc.

Proof. The if -direction is trivial. The only if -direction is less trivial. We will
use the following abbreviations, D = D1 ∩D2 ∩D3 and C = ∂D.

Assume D is non-empty and that neither (1) nor (2) holds. The inter-
section D is convex as it is the intersection of convex sets. We distinguish
between the case where D is a point or and the case where D is not a point.

• Suppose D is the singleton {p}. This point p can not lie in the interior
of the three discs, because D would not be a point then.

Nor can p lie in the interior of two discs. If that would be the case then
there exists a neighborhood of p that is part of the intersection of those
two discs, say D1 and D2. Moreover p would be part of C3 and this
neighborhood would intersect the interior of D3. This means D is not a
point.

So p must lie on the border of two discs, say D1 and D2, and p must
also be part of D3 because D = {p}. This contradicts our assumption
that (2) does not hold.

• Assume D is not a point. All points on C belong to at least one Ci. If
there is a point that does not belong to any Ci, then it is in the interior
of all Di and there exists a neighborhood of that point that is in the
interior of all Di and hence in D. That contradicts to the fact that this
point is in C.

80 The alibi query

Furthermore, not all points of C belong to a single Ci. If that was the
case then Di would be part of (and equal to) D and its center would
be inside the other two discs which contradicts the assumption that (1)
does not hold.

So, C is made up of parts of the Ci, of which some may coincide but
not all of them. When traveling along C we will encounter a point p
that connects a part of a Ci and a part of a Cj , where i 6= j, that do
not coincide, otherwise (1) must occur again which is a contradiction.
However, this p also yields to a contradiction since it belongs to two
different Ci, say C1 and C2, and is part of C hence D and D3. This
contradicts the assumption that (2) does not occur.

4.2.7.3 Translating the theorem in a formula

We can simplify the equations of the disks even further using coordinate trans-
formations. By applying a translation, rotation and scaling we may assume
that (x1, y1) = (0, 0), x2 ≥ 0, r1 = 1 and y2 = 0. Using these simplifications
and translating Theorem 4.4, we get the following formula.

ψ1(x2, r2, x3, y3, r3) :=
(

(−x2)
2 ≤ r22 ∧ (−x3)

2 + (−y3)
2 ≤ r23

)

∨
∃x∃y

(

x2 + y2 = 1 ∧ (x− x2)
2 + y2 = r22 ∧ (x− x3)

2 + (y − y3)
2 ≤ r23

)

.

This is a formula that decides if either the center of the first disc is part of
the two other discs (see the first line), or if either there exists a point in the
intersection of the first two circles that is part of the third disc (see the second
line). All that remains now is making the expression

∃x∃y
(

x2 + y2 = 1 ∧ (x− x2)
2 + y2 = r22 ∧ (x− x3)

2 + (y − y3)
2 ≤ r23

)

quantifier free.
To do this we assume that C1 and C2 do not coincide but have a non-empty

intersection. This is equivalent to x2 6= 0 ∧ x2 ≤ r2 + 1. Next, we need to
compute the point(s) where C1 and C2 intersect. These are given by

{

x2 + y2 = 1
(x− x2)

2 + y2 = r22
or

x =
x2
2+1−r2

2
2x2

y = ±
√

1 −
(

x2
2+1−r2

2
2x2

)2

or

x =
x2
2+1−r2

2
2x2

y = ±
√

(

1 − x2
2+1−r2

2
2x2

)(

1 +
x2
2+1−r2

2
2x2

)

4.2. The alibi query in dimension two 81

or

x =
x2
2+1−r2

2
2x2

y = ± 1
2x2

√

(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

.

If y = 0, then verifying if that single point of intersection is part of D3 is easy,
one only needs to verify whether

(

x2
2 + 1 − r22

2x2
− x2

)2

+ y2
3 ≤ r23

or equivalently
(

1 − r22 − x2
2

)2
+ 4x2

2y
2
3 ≤ 4x2

2r
2
3. If y 6= 0, then verifying if one

both points of intersection is part of D3 is less trivial, since this involves square
roots

(

x2
2 + 1 − r22

2x2
− x3

)2

+

(

± 1

2x2

√

(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

− y3

)2

≤ r23

or
(

x2
2 + 1 − r22 − 2x2x3

)2
+

(

±
√

(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

− 2x2y3

)2

≤ 4x2
2r

2
3

or
(

x2
2 + 1 − r22 − 2x2x3

)2
+
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

+

(2x2y3)
2 ± 4x2y3

√

(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

≤ 4x2
2r

2
3

or
(

x2
2 + 1 − r22 − 2x2x3

)2
+
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

+

(2x2y3)
2 − 4x2

2r
2
3 ≤ ±4x2y3

√

(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

.

This is almost a FO(+,×, <, 0, 1)-formula except for the square root. How-
ever, the square root can be eliminated as we will show next. The previous
expression is of the form L ≤ ±a

√
W . The presence of the ± simplifies this

a lot, this means either sign of the square root will do, and also that we may
assume the right hand-side is positive. Of course the square root must exist
as well, this means W ≥ 0.

82 The alibi query

This expression can then be simplified to

W ≥ 0 ∧
(

L ≤ 0 ∨ L2 ≤ a2W
)

and gives us the expression

Φ2(x2, r2, x3, y3, r3) :=
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

≥ 0 ∧
(

(

x2
2 + 1 − r22 − 2x2x3

)2

+
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

+ (2x2y3)
2 − 4x2

2r
2
3 ≤ 0

∨
(

(

x2
2 + 1 − r22 − 2x2x3

)2
+
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

+ (2x2y3)
2 − 4x2

2r
2
3

)2

≤ (4x2y3)
2
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

)

.

4.2.7.4 The safety formula

Now, all that remains to be constructed is a formula that returns the con-
venient coordinates and a formula that guarantees that C1 and C2 actually
intersect for safety, i.e., to exclude the case of empty intersection. The latter
is constructed as follows. The formula ϕ(x1, y1, r1, x2, y2, r2) returns true if
and only if the two circles, with centers (x1, y1) and (x2, y2) and radii r1 and
r2 respectively, have a distance between their centers that is not larger that
the sum of their radii and not equal to zero to ensure they do not coincide.
We have

ϕ(x1, y1, r1, x2, y2, r2) := 0 < (x2 − x1)
2 + (y2 − y1)

2 ≤ (r1 + r2)
2 .

The formula φ(x1, y1, r1, x2, y2, r2) returns True if and only if the second
circle is not fully enclosed by the first, i.e., the sum of the distance between
the centers plus the second radius is bigger than the first radius and vice versa.
We can write

φ(x1, y1, r1, x2, y2, r2) := (x2 − x1)
2 + (y2 − y1)

2 ≥ (r1 − r2)
2 .

These two safety conditions give us our safety formula

Φsafe(x1, y1, r1, x2, y2, r2) :=

ϕ(x1, y1, r1, x2, y2, r2) ∧ φ(x1, y1, r1, x2, y2, r2).

4.2. The alibi query in dimension two 83

4.2.7.5 The change of coordinates

The transformation consists of a translation, rotation and scaling. The trans-
lation moves the first circle’s center to the origin. The rotation aligns the
second centre with the x-axis. Finally the scaling ensures that the first circle’s
radius is equal to one. First, the translation T (x, y) := (x − x1, y − y1). The
rotation is

R(x, y) :=
1

√

(x2 − x1)2 + (y2 − y1)2

(

x2 − x1 y2 − y1

y1 − y2 x2 − x1

)(

x
y

)

and finally, the scaling is S(x, y) := 1
r1

(x, y). The transformation is then a
composition of those three transformations A(x, y) = (S ◦R ◦ T)(x, y) :=

(

(x2 − x1)(x− x1) + (y2 − y1)(y − y1)

r1
√

(x2 − x1)2 + (y2 − y1)2
,

(y1 − y2)(x− x1) + (x2 − x1)(y − y1)

r1
√

(x2 − x1)2 + (y2 − y1)2

)

.

The following formula takes three circles with centers (xi, yi) and radii ri
respectively, and transforms them in three new circles where the first circle
has center (0, 0) and radius 1, the second circle has center (x′2, 0) and radius
r′2 and the third circle has center (x′3, y

′
3) and radius r′3.

Φtransformation(x1, y1, r1, x2, y2, r2, x3, y3, r3, x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) :=

x′2 =

√

(x2 − x1)2 + (y2 − y1)2

r1
∧ r′2 =

r2
r1

∧ r′3 =
r3
r1

∧ x′3 =
(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1)

r1
√

(x2 − x1)2 + (y2 − y1)2

∧ y′3 =
(y1 − y2)(x3 − x1) + (x2 − x1)(y3 − y1)

r1
√

(x2 − x1)2 + (y2 − y1)2
.

Note that this is not a FO(+,×, <, 0, 1)-formula anymore due to the square
roots and fractions. This ”formula” is meant to act like a function, which
substitutes coordinates. The substituted coordinates have fractions and square
roots but these can easily be disposed of when having the entire inequality on
a common denominator, isolating the square root and squaring the inequality,
as we showed in Section 4.2.7.3.

84 The alibi query

4.2.7.6 The formula for the alibi query at a fixed moment in time

First, we construct a formula that checks for any of two circles out of three if
any of the conditions in Theorem 4.4 are satisfied.

ψ2/3(x1, y1, r1, x2, y2, r2, x3, y3, r3) := ∃x′2∃r′2∃x′3∃y′3∃r′3
(

Φtransformation(x1, y1, r1, x2, y2, r2, x3, y3, r3, x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∧

(

ψ1(x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∨ Φsafe(x1, y1, r1, x2, y2, r2) ∧ Φ2(x

′
2, r

′
2, x

′
3, y

′
3, r

′
3)
)

∨ Φtransformation(x1, y1, r1, x3, y3, r3, x2, y2, r2, x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∧

(

ψ1(x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∨ Φsafe(x1, y1, r1, x3, y3, r3) ∧ Φ2(x

′
2, r

′
2, x

′
3, y

′
3, r

′
3)
)

∨ Φtransformation(x2, y2, r2, x3, y3, r3, x1, y1, r1, x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∧

(

ψ1(x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∨ Φsafe(x2, y2, r2, x3, y3, r3) ∧ Φ2(x

′
2, r

′
2, x

′
3, y

′
3, r

′
3)
))

.

This formula is all we need to incorporate Helly’s theorem in our final
formula. Four discs have a non-empty intersection if and only if the following
formula is satisfied

ψalibi(x1, y1, r1, x2, y2, r2, x3, y3, r3, x4, y4, r4) :=

ψ2/3(x1, y1, r1, x2, y2, r2, x3, y3, r3) ∧
ψ2/3(x1, y1, r1, x2, y2, r2, x4, y4, r4) ∧
ψ2/3(x1, y1, r1, x3, y3, r3, x4, y4, r4) ∧

ψ2/3(x2, y2, r2, x3, y3, r3, x4, y4, r4).

This is almost a quantifier free-formula except for the fractions and square
roots. However, as we showed before these can easily be disposed of. We
omitted these tedious conversions for the sake of clarity.

4.2.7.7 Notes on experiments

First, we remark that the formula above is a lot shorter than the formula ψalibi,
so it is reasonable to assume that this formula evaluates even faster than ψalibi.
Before we started looking for a FO(+,×, <, 0, 1)-formula to answer the alibi
query, we tried several software packages, that support quantifier-elimination,
to produce a formula for us. In both cases, the general alibi query and the alibi
query for a fixed moment in time, the quantifier-elimination methods failed to
produce an answer at all after prolonged sessions. This was expected and, at
the same time, a motivation to find such a formula ourselves.

For the non-parametric case however, Mathematica returns an answer
in a matter of hundredths of a second. In this case, the non-parametric alibi
query for a fixed moment in time, the general methods do produce an answer

4.3. Conclusion 85

efficiently. The relative differences were inconsistent, the same parameters
would take, for example, .014 and .031 seconds, depending on the other pro-
cesses the system was running and which we could not control. For this reason
we decided not to include experimental results in this case.

4.3 Conclusion

In this chapter, we proposed a method that decides if two space-time prisms
have a non-empty intersection or not. Existing quantifier-elimination methods
can achieve this already through means of quantifier elimination though not
in a reasonable amount of time. Deciding intersection of concrete space-time
prisms takes of the order of minutes, while the parametric case can be mea-
sured at least in days if a solution would ever be obtained. The parametric
solution we laid out in this paper only takes a few milliseconds or less.

The solution we present is almost a first-order formula containing square
root-expressions. These can easily be disposed of using repeated squarings
and adding extra conditions, thus obtaining a true quantifier free-expression
for the alibi query.

We also give a solution to the alibi query at a fixed moment in time.
The solutions we propose are based on geometric argumentation and they

illustrate the fact that some practical problems require creative solutions,
where at least in theory, existing systems could provide a solution.

5
Space-time prisms on road
networks

Until now, space-time prisms have been studied for unconstrained movement
in the two-dimensional plane. In this chapter, we study space-time prims
for objects that are constraint to travel on a road network. Movement on a
road network can be viewed as essentially one-dimensional. We describe the
geometry of a space-time prism and give an algorithm to compute and visualize
space-time prisms on a road network. For experiments and illustration, we
have implemented this algorithm in Mathematica.

Furthermore, we study the alibi query, which ask whether two moving
objects could have possibly met or not. This comes down to deciding if the
chains of space-time prisms produced by these moving objects intersect. We
give an efficient algorithm to answer the alibi query for moving objects on a
road network. This algorithm also determines where and when two moving
objects may have met.

This chapter is organized as follows. We start with the defining space-time
prisms on road networks. In Section 5.2, we first give a theorem that is the
heart of the algorithm we develop. In the same section, we give the algorithms
to construct and visualize space-time prisms and their spatial projections on
road networks. In Section 5.3, we give a solution to the alibi query for ob-
jects moving in one dimensional-space and then for objects moving in a road
network.

87

88 Space-time prisms on road networks

5.1 Space-time prisms on road networks

The next step is to determine these space-time prisms on a road network such
that they can easily be queried and visualized afterwards.

This does not simply amount to taking the intersection of a space-time
prism representing movement in R2 and the road network. To see this, con-
sider the projection of the unconstrained space-time prism along the time axis
onto the (x, y)-plane. This projection is an ellipse with foci the points of de-
parture and arrival, i.e., pi = (xi, yi) and pi+1 = (xi+1, yi+1). We recall that
at a time t, ti ≤ t ≤ ti+1, the object’s distance to p is at most vi(t − ti)
and its distance to q is at most vi(ti+1 − t). Adding those distances gives
vi(t − ti) + vi(ti+1 − t)vi(ti+1 − ti), which is constant. Therefor all possible
points a moving object with speed limit vmax could have visited must lie within
this ellipse with foci pi and pi+1. Moreover, the sum of their distances to pi

and p is less or equal to vi(ti+1−ti). In this ellipse, any trajectory that touches
the border of the ellipse and has more than two straight line segments is longer
than vi(ti+1 − ti). This particular trajectory lies in the ellipse of the uncon-
strained space-time prism and the road network, but a space-time prism on
the road network does not capture it because there are points on it which can
be reached in time, but from which the destination cannot be reached in time
and vice versa. Figure 5.1 depicts such a situation. There is no path on the

���� ��

pi

road network

R2 space-time prism projection

pi+1

Figure 5.1: Road network space-time prisms can not be easily derived from
space-time prisms in R2.

road network from p that reaches q in the given time interval. The intersection
of the space-time prism with the road network is nonempty, whereas the road
network space-time prism clearly is.

To define space-time prisms on a road network, we need to define an ap-

5.1. Space-time prisms on road networks 89

Figure 5.2: Space-time prism (red) on road networks (green and black) and
its spatial projection (green).

propriate distance function on the road network. The distance measure that
we use is derived from the shortest path-distance used in graph theory [3].

Suppose we have road network RN, given by its set of vertices V and set of
labeled edges E. Let p = (xp, yp) and q = (xq, yq) be two points on that road
network RN. The points p and q are not necessarily vertices. Suppose p lies
on (the embedding of) the edge ((xp,0, yp,0), (xp,1, yp,1)) and q lies on the edge
((xq,0, yq,0), (xq,1, yq,1)). We construct a new road network RNpq from RN. Its
set of vertices is Vpq = V∪{p, q} and its set of edges is Epq = E∪{((xp,0, yp,0),
(xp, yp)), ((xp, yp), (xp,1, yp,1)), ((xq,0, yq,0), (xq, yq)), ((xq, yq), (xq,1, yq,1))}. So,
we have split the edges on which p and q are located in p and q. For what
concerns the labels, we keep the speed limits of the original edges for the
split edges and the time spans of the new edges are computed according to
Definition 2.10.

It is precisely this construction we need to define the distance along the
road network RN and space-time prism on RN.

90 Space-time prisms on road networks

Definition 5.1. Let RN be a road network, p, q ∈ RN and let Vpq be the set
of vertices V ∪ {p, q} and let Epq equal the set of edges obtained from E by
adding p and q to the vertex set. The road network time between p and q,
denoted by dRN(p, q), is the shortest-path distance1 between p and q in the
graph (Vpq,Epq), with respect to the time-span labelling of the edges.

A path, i.e., a list of adjacent edges that connect p and q, from p to q whose
length, with respect to the time-span labelling of the edges, equals dRN(p, q)
is called a fastest path from p to q.

We note that the road network time between p and q in the above definition
has minimal total weight and returns the earliest possible time in which you
can reach p from q and vice versa. The metric that we describe takes two
points from a road network and returns the shortest time needed to get from
one to the other when travelling at the allowed maximal speed at each segment.

We remark that if all edges in road network have the same speed limit
vmax, then the metric defined in Definition 5.1 is the shortest-path metric (up
to a scaling factor vmax) on the graph embedding RN. If, on the other hand,
different speed limits appear per edge, then the shortest paths are not always
the fastest paths. In Figure 5.9, we can see that neither one of the two shortest
paths in the road network is also the fastest path. The fastest path starts at
the left-most node, goes to the upper node and then the lower node and ends
at the right-most node.

A space-time prism on a road network is the geometric location in R×RN ⊂
R × R2 of all points a moving object could have visited when travelling,
restricted to RN, from an origin p to a destination q with in a time-frame
ranging from tp to tq, respecting the speed limits on the edges of RN. We
define this more formally. Given a road network RN, points p, q and u on RN,
and time moments tp and tq for p and q, we write t−u to abbreviate tp + dRN(p,
u) and t+u to abbreviate tq − dRN(u, q). We note that in the notationt t−u and
t+u , p and q are absent although these values are dependent on them, we choose
not to overload the notation in this case because it is usually clear from the
context what p and q are.

Definition 5.2. Let RN be a road network, let p, q ∈ RN. The space-time
prism on the road network between (tp, p) and (tq, q), with respect to the
speed limits of RN is denoted by PRN(tp, p, tq, q) and is defined as the set of
(t, x, y) tuples for which

u = (x, y) ∈ RN,
dRN(p, u) + dRN(u, q) ≤ (tq − tp),
t−u ≤ t ≤ t+u .

1We mean the single-source shortest-path distance that is commonly used in graph theory
and that can be computed efficiently by Dijkstra’s algorithm [3].

5.2. Properties of space-time prisms on road networks 91

The space-time prism on the road network between (tp, p) and (tq, q), with
respect to a general maximal speed vmax is the space-time prism on RN after
relabelling all edges of RN with speed limit vmax.

5.2 Properties of space-time prisms on road net-
works

In the main result of this section, we describe the structure of a space-time
prism. This composition is turned into an algorithm to compute and visualize
a space-time prism and its spatial projection, later on. In Section 5.3, we use
the techniques provided by this theorem, to answer the alibi query for road
networks.

Our inspiration for the following theorem comes from the observation that
a one-dimensional space-time prism can be dissected as pictured in Figure 5.3.
The two diamonds represent all trajectories from a node to itself given bounds
on time and speed. The parallelogram on the right represents all travel from
one node to an adjacent one given the time limits and the ruling speed limit
on that segment. The idea is that if we know the time limits in each node, and
the ruling speed limit on the edge connecting the nodes, we can reconstruct
the entire prism one edge at a time.

+
xi xi+1

t

ti+1

ti

xi xi+1

t

ti+1

ti

x x

Figure 5.3: A dissection of a one-dimensional space-time prism.

Theorem 5.3. Let RN be a road network given by the vertex set V and the
edge set E and network time span labels for the edges. Let p and q be two
vertices on RN.

1. A vertex u is part of PRN(tp, p, tq, q) if and only if dRN(p, u) + dRN(u,
q) ≤ (tq − tp);

92 Space-time prisms on road networks

2. If the vertex u is in PRN(tp, p, tq, q), then PRN(t−u , u, t
+
u , u) ⊆ PRN(tp, p,

tq, q);

3. If the vertices u and w are in the space-time prism PRN(tp, p, tq, q), then
PRN(t−u , u, t

+
w , w) ⊆ PRN(tp, p, tq, q);

4. Moreover, the space-time prism PRN(tp, p, tq, q) equals

⋃

u, v ∈ V,

dRN(p, u) + dRN(u, q) ≤ (tq − tp)
dRN(p, w) + dRN(w, q) ≤ (tq − tp)
tp + dRN(p, u) < tq − dRN(w, q)

PRN(tp + dRN(p, u), u, tq − dRN(w, q), w).

Proof of Theorem 5.3. Part (i) is trivial. For Part (ii) and Part (iii), it suffices
to remark that an object travelling past a vertex u can not arrive there sooner
than t−u = tp + dRN(p, u) and can not leave the vertex u later than t+u =
tq − dRN(u, q). In Part (ii), PRN(t−u , u, t

+
u , u) consists of all points that are

reachable from u and from which one can return to u in the remaining time
interval [t−u , t

+
u], as illustrated in Figure 5.4. In Part (iii) is described which

vertices can be reached in the remaining time, as illustrated in Figure 5.5.

From Parts (i), (ii) and (iii) follows the inclusion ⊇ of Part (iv). The other
inclusion is clear: PRN(tp, p, tq, q) contains all vertices u and w that can be
reached in time and all points that can be reached from these vertices in the
remaining time.

s r sr

Figure 5.4: Cases 1 and 2.

We remark that it is sufficient in Part (iii) of Theorem 5.3, to consider
adjacent vertices u and w. So, Part (iv) of Theorem 5.3 states that it is

5.2. Properties of space-time prisms on road networks 93

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

sr

Figure 5.5: Case 3.

sufficient to compute space-time prisms starting and ending in a vertex and
between adjacent vertices in the road network. The union of all these make
up the entire space-time prism.

5.2.1 Computing and visualizing space-time prisms on road
networks

In this section, we describe an algorithm to compute a space-time prism on a
road network. The direct application of this computation is the visualization
of the space-time prism. Further on, we also use this computation in querying,
more specifically in computing, answering and visualising the alibi query on
road networks.

Theorem 5.3 is the key to a relatively simple algorithm to compute the
space-time prisms. The algorithm to compute (visualise) road network space-
time prisms can be split into two major parts. A pre-computation and the
actual computation and drawing.

The input is a road network RN in which the edges are labeled with speed
limits. Also an origin p and destination q on RN are given and a departure
time tp and arrival time tq. Let vmax denote the maximum of all speed limits
occurring in RN.

The pre-computation can then be split into two parts and reused for both
2-dimensional and 3-dimensional visualization. The algorithm takes as input
a road network RN given as a set of vertices, edges and weights, a starting
point and time p and tp, and an arrival point and time q and tq. It outputs a
modified road network RN′, a set of time pairs {(t−u , t+u)} | u ∈ RN′} denoting
the bounds of the intervals in time of the space-time prism PRN(tp, p, tq, q) at
each vertex, a subset of vertices VP of V that are part of the space-time prism
and a subset of edges EP of E that are part of or intersect the space-time
prism.

94 Space-time prisms on road networks

PRECOMP: input= (RN, p, tp, q, tq);
output= (RN′, {(t−u , t+u)} | u ∈ RN′},VP ,EP)

Step 1. First, we add the vertices p and q to the vertex set of RN. Then
we isolate that part of RN that can actually be part of the spatial projection
of the space-time prism. To do this we restrict our attention to the smallest
part of RN that is in πxyP (tp, p, tq, q, vmax) where P (tp, p, tq, q, vmax) is the
unconstrained space-time prism for movement in R2, πxy is an operator that
projects a set in R×R2 onto the (x, y)-plane and vmax is the maximum of all
weights in RN. The set πxy (P (tp, p, tq, q, vmax)) is a set bounded by an ellipse,
see Section 2.3. First, we select all the edges that have at least one vertex
that is inside this projected set and select the vertices that bound those edges.
So, we obtain a new reduced road network RN′ consisting of all edges that

intersect πxy

(

PR
2
(tp, p, tq, q, vmax)

)

.

Step 2. Now we apply a single-source shortest path algorithm (e.g. Dijkstra’s
algorithm) twice on the graph RN′. Once to compute all the road network
times spans to p, and once more to compute all the road network time spans
to q.

For each vertex u in RN’ we store its road network time to p, i.e., the arrival
time t−u = tp + dRN(p, u), its road network time to q, i.e., the time to leave
t+u = tq − dRN(u, q). We also store the vertices u for which dRN(p, u) + dRN(u,
q) ≤ (tq − tp) in the set VP . In the set EP we store all edges that connect to
at least one vertex in VP .

With the information of the the pre-computation step, we can easily visu-
alize a space-time prism above the road-network. We look at two problems.
Firstly, we determine or visualise the spatial projection of the space-time prism
and later, we determine or visualize a space-time prism in time-space on top
of the projection.

To visualize the spatial projection, i.e., to color all the possible places
in a road network that could have been visited when travelling from p to q
with a speed that never exceeded the local speed limit, we give the following
algorithm.

2D-space-time prism: input= (RN′, {(t−u , t+u } | u ∈ RN′},VP ,EP);
output= drawing of πxy

(

PRN(tp, p, tq, q,
)

).

For every edge (r, s) in EP , with r = (xr, yr) and s = (xs, ys), in EP let its speed
limit be vrs and time span be wrs and set drs =

√

(xs − xr)2 + (ys − yr)2 =
vrswrs.

5.2. Properties of space-time prisms on road networks 95

• If t−r + wrs ≤ t+s or t−s + wrs ≤ t+r then color the entire line segment
(xr, yr, xs, ys) and exit;

• else if r ∈ VP and t−r + wrs > t+s then color the line segment with end-

points (xr, yr, x0, y0), where (x0, y0) = (xr, yr) + (t+r −t−r)
2 vrs

(xs−xr,ys−yr)
drs

;
and

• if s ∈ VP and t−s +wrs > t+r then color the line segment with endpoints

(x0, y0, xs, ys), where (x0, y0) = (xs, ys) + (t+s −t−s)
2 vrs

(xr−xs,yr−ys)
drs

.

The equation (x0, y0) = (xr, yr) + (t+r −t−r)
2 vrs

(xs−xr,ys−yr)
drs

needs more ex-
planation. In the second step of the above algorithm, we are coloring the
projection of Case 1 of Figure5.4. The point (x0, y0) is the projection of the
right most vertex of the triangle in Figure 5.4. Its coordinates are those of
the vertex r plus a unit vector pointing from r to s, (xs−xr,ys−yr)

drs
, times the

distance of that vertex from r, which equals half the time that can be spent

at r, (t+r −t−r)
2 , times the speed limit on the edge between r and s, vrs. To vi-

sualize the space-time prism in time-space, we also iterate over all edges, but
instead of coloring 2-dimensional line segments we have to color one or two
3-dimensional polygons per edge. We use the following notation for polygons,
〈p1, . . . , pk〉 is the polygon obtained by connecting consecutive points pi with
pi+1 in this list and connecting the first point p1 with the last point pk in the
list.

3D-space-time prism: input= (RN′, {(t−u , t+u } | u ∈ RN′},VP ,EP);
output= drawing of PRN(tp, p, tq, q,).

For each edge (r, s) in EP , with r = (xr, yr) and s = (xs, ys), we do the
following for r and s. There are several possible cases one needs to consider
and they are illustrated in Figure 5.4, corresponding to Part (2) of Theorem 5.3
and Figure 5.5 corresponding to Part (3) of Theorem 5.3.

• These are Cases 1 and 2, illustrated in Figure 5.4: If wrs ≤ (t+r −t−r)
2 , then

draw the polygon 〈(t0, x0, y0), (t
+
r , xr, yr), (t

−
r , xr, yr), (t0, x0, y0)〉 where

t0 = t−r +t+r
2 and

(x0, y0) = (xr, yr) +
(t+r − t−r)

2
vrs

(xs − xr, ys − yr)

drs
.

Otherwise, draw the polygon 〈(t1, xs, ys), (t
+
r , xr, yr), (t

−
r , xr, yr), (t0, xs,

ys), (t1, xs, ys)〉 where t0 = t−r + wrs and t1 = t+r − wrs;

96 Space-time prisms on road networks

• This is Cases 3 illustrated in Figure 5.5: In this case one is able to reach
s from r before one has to leave s again. In other words, t+s ≥ t−r +wrs.
In which case the polygon 〈(t−r , xr, yr), (t1, xr, yr), (t

+
s , xs, ys), (t0, xs, ys)〉

is drawn where t0 = t−r + wrs and t1 = t+s − wrs;

• Repeat the previous steps with the indices r and s interchanged.

The correctness of the algorithms follows from Theorem 5.3. The end
result on each segment is either a polygon as drawn in Figure 5.4, Figure 5.5
or a combination thereof as illustrated in Figure 5.6.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

r s

r s

r s

r s

Figure 5.6: A combination of Figures 5.4 and 5.5.

5.2.2 Implementation and illustration

As proof of concept, we implemented algorithms 2D-space-time prism and
3D-space-time prism of Section 5.2.1 in Wolfram’s Mathematica [32]. This

5.2. Properties of space-time prisms on road networks 97

implementation is available at [24]. In this section, we illustrate its working.
Figure 5.8 gives three examples of space-time prisms (red) and their spatial
projection (green) above a road network (black and green).

Figure 5.7: A space-time prism (red) on a road network (green and black) and
its spatial projection (green).

5.2.3 Complexity considerations

Let the number of vertices in the road network be n. Considering from a
practical point of view, we may also say the number of edges in the network is
O(n). This comes from assuming that every vertex, in a real-life road network,
connects to rarely more than four edges.

Selecting the vertices that are within the unconstrained projected space-
time prism, i.e., within the ellipse, can be done by going over all vertices and
selecting those that satisfy the inequality that describes the area bounded by
the ellipse. Starting out with ordered vertices according to their coordinates
can significantly reduce this complexity. However, in the worst case almost all

98 Space-time prisms on road networks

Figure 5.8: A space-time prism (red) on a road network (green and black) and
its spatial projection (green).

vertices will be selected, which is something we can not a priori estimate.

This selection takes O(n) steps and we assume the number of selected
vertices is again O(n). This is an overestimation in large road-networks, espe-
cially when sample points succeed each other closely in time. Assuming that
the vertices are ordered, we can say that the selection step takes O(m) steps
where m is the number of vertices selected within the ellipse and m≪ n.

The next step is running Dijkstra’s algorithm, this takes O
(

m2
)

time and
is the bottleneck of our algorithm.

The rest, drawing in dimension two or three, only takes at most a fixed
number of operations per edge. In the 2D case we draw at most two line-
segments per edge, and in three dimensions at most four polygons. We also
process every edge only once. This step takes again O(m) time.

From this we can conclude that visualizing space-time prisms takes O
(

m2
)

time, with m≪ n.

5.3. The Alibi Query 99

Figure 5.9: Road Network space-time prism where the fastest path does not
coincide with the shortest.

5.3 The Alibi Query

5.3.1 The alibi query on road networks

Deciding whether two space-time prisms on a road network have an empty
intersection is not too difficult once we have a way to visualize space-time
prisms. We can proceed as follows. We first select the vertices that appear in
both space-time prisms and collect the edges that have at least one vertex in
that intersection. Then we iterate over all these edges and perform intersection
tests on the polygons that appear above them in the t-direction.

The naive way of doing this would be to take the, at most, four polygons
from one space-time prism, and, at most four, from the other and verify in
they intersect. However, the nature of these polygons allow us to decide rather
quickly which pair of polygons to dismiss and which pair needs further inspec-
tion. In the following, we assume to investigate the edge bounded by vertices
r and s, where the arrival and departure times for the first space-time prism
are t−r , t

+
r , t

−
s and t+s respectively, these times for the second space-time prism

will carry a prime, i.e., t′−r , t
′+
r , t

′−
s and t′+s respectively (in this section, we

continue the terminology used in Section 5.2.1).

We apply the following two tests to all relevant line segments in the road
network:

• if the time intervals are disjunct then exit and return False for this

100 Space-time prisms on road networks

segment. (This mean checking if either t−r > t′+r ∧ t−s > t′+s or
t−r < t′+r ∧ t−s < t′+s .);

• if the time intervals overlap then exit and return True for this segment.
(This mean checking if either t′−r ≤ t−r ≤ t′+r ∨ t′−r ≤ t+r ≤ t′+r ∨ t−r ≤
t′−r ≤ t+r ∨ t−r ≤ t′+r ≤ t+r or t′−s ≤ t−s ≤ t′+s ∨ t′−s ≤ t+s ≤ t′+s ∨ t−s ≤
t′−s ≤ t+s ∨ t−s ≤ t′+s ≤ t+s).

If the previous tests are inconclusive we will test the remaining cases
with line-segment intersections using the formulas from Section 4.1.1. To do
that, we will align the segment we are investigating on the x-axis and place
one point in the origin to simplify computation: x0 = 0 and x1 = drs =
√

(xs − xr)2 + (ys − yr)2. Now assume t+r < t′−r , if this is not the case then
switch the role of the first and second space-time prism before proceeding.
This also means t−s > t′+s . Let ψ∩(x0, t0, x1, t1, x

′
0, t

′
0, x

′
1, t

′
1) be a formula that

returns true if the segment bounded by the points (x0, t0) and (x1, t1) inter-
sects the segment bounded by the points (x′0, t

′
0) and (x′1, t

′
1), and that returns

false if they do not intersect.
Now we can write the remaining steps of the algorithm.

1. If r ∈ VP and s ∈ VP ′ then let t2 = t+r +t−r
2 , x2 = vrs

t+r −t−r
2 , t′2 = t′+s +t′−s

2

and x′2 = x1 − vrs
t′+s −t′−s

2 . If ψ∩(x0, t
−
r , x2, t2, x1, t

′−
s , x

′
2, t

′
2) or ψ∩(x0, t

+
r ,

x2, t2, x1, t
′+
s , x

′
2, t

′
2) returns True, then return True and exit;

2. If r ∈ VP ′ and s ∈ VP , then do the same as in step one but change the
primes on the coordinates, i.e., give primes to the coordinates without
primes and vice versa. Leave x0 and x1 unchanged.

3. If t+s ≥ t−r + wrs then let f be the segment (x0, t
−
r , x1, t

+
s) and if t+r ≥

t−s + wrs then let f be the segment (x0, t
+
r , x1, t

−
s); If t′+s ≥ t′−r + wrs,

then let f be the segment (x0, t
′−
r , x1, t

′+
s) and if t′+r ≥ t′−s +wrs then let

f be the segment (x0, t
′+
r , x1, t

′−
s). If f or f ′ does not exist, then return

False and exit; If ψ∩(f, f ′) returns true, then return true and exit.

4. Return false and exit.

This concludes the algorithm to compute the answer to the alibi-query.

5.3.2 Complexity considerations

The formula we have given in Section 4.1.1, decides the emptyness of the in-
tersection of two space-time prisms in constant time. To decide the alibi query
for a lifeline necklace containing N space-time prisms and another consisting

5.4. Visualizing the intersection of two space-time prisms 101

of M space-time prisms, costs O(N +M) time (when first emptyness of the
time intervals is tested).

For the space-time prism intersection on road networks, there is a fixed
upper bound on tests that need to be done per edge that is in both space-time
prisms. If the pre-computation is already done, then we first need to select
the edges that appear in both projected ellipses of the constrained space-time
prisms. This can be done, assuming once again that the vertices are ordered,
in O(m+ n) time where m is the number of vertices in the first space-time
prism and n the number of vertices in other space-time prism.

Once this intersection is selected we iterate over every edge just once
performing a number of intersection tests which has a fixed upper bound.
The number of edges in the overlapping areas bounded by the ellipses are
O(min{m,n}). This means we can conclude that deciding the emptiness
of space-time prism intersection can be done in O(max{m,n}) time if the

pre-computation is already done. It takes O
(

(max{m,n})2
)

time if the pre-

computation is not available.

To decide the alibi query for a space-time prism chain containing N space-
time prisms and another consisting of M space-time prisms, we need to mul-
tiply this cost further by O(N +M).

5.4 Visualizing the intersection of two space-time

prisms

The alibi query is a decision problem, which we solved in the previous section.
For application purposes however, it is interesting to know, if two moving
objects could have met, where they could have met, when and for how long
they could have met and where they could have traveled together. All these
questions, and more, can be answered by actually computing the intersection
of the space-time prisms if this intersection is not empty.

This, in turn, is not too difficult since we already figured out how to
compute single space-time prisms. Like in the decision problem, we iterate
over every edge that has at least one polygon in both space-time prisms,
and compute the intersection as an intersection between polygons. There is
however, one small issue that needs to be considered. In the computation of
the space-time prism polygons in Section 5.2, we used distances, which, were
computed using square roots and this inevitably introduces rounding errors.
The errors in turn cause polygons on the same edge to not always be aligned,
i.e., being part of the same plane.

We solve this by projecting the polygons onto a two-dimensional space
before computing intersections, similar to the approach we take in solving the

102 Space-time prisms on road networks

decision problem. Suppose we are projecting the polygons above the edge
bounded by r = (tr, xr, yr) and s = (ts, xs, ys). Every corner-point p =

(tp, xp, yp) of the polygons in mapped to a point
(

tp,
√

(xp − xr)2 + (yp − yr)2
)

,

thus effectively translating the polygons so that r becomes the origin and the
edge is aligned with the x-axis.

Reconstructing the polygons is then fairly straightforward. Let (tp, xp) be
a corner-point of the polygon that makes up the intersection, and −→urs be the
unit vector derived from −→rs. The point (tp, xp) is then mapped to the point
(tp, xr, yr) + xp.

−→urs.

Intersection Visualization: input= (RN,P1,P2);
output=drawing of P1 ∩ P2.

Step 1. Select the edges that occur in both space-time prisms.

Step 2. Iterate over all the selected edges.

1. Project all the polygons onto the (x, y)-plane using the procedure de-
scribed above.

2. Compute the intersections of every polygon on that edge belonging to
P1 with every polygon belonging to P2.

3. Reconstruct the intersection as described above.

Note that for complexity considerations step 2 in the above algorithm can
be executed in time O(1) since the number of polygons per space-time prism
per edge is at most two and each polygon has at most four vertices.

Figures 5.11 and 5.12 are the output we created with our implementation.
They show a yellow road network space-time prism and a blue one with differ-
ent departure and arrival times and locations. The green coloured part depicts
their intersection. We also produced a projection of the space-time prisms and
their intersection on the road network in their respective colours. The vertical
straight line on the left is the time axis. We also projected the intersection on
that axis.

5.5 Example Queries

To show the usefulness of computing the intersection, we present some example
queries. The above algorithms are cut out to provide answers to these queries.

• When Alfred leaves location p at time tp and has to be at location q at
time tq, can Alfred visit location r and how long can Alfred stay there?

5.5. Example Queries 103

Figure 5.10: Example 1: Road Network space-time prisms with their intersec-
tion.

To answer this query we do not need space-time prisms just yet. We can
compute the time of arrival and departure using network time at location r.

• When Alfred leaves location p at time tp and has to be at location q at
time tq, how much time does Alfred have at most to spare?

• When Alfred leaves location p at time tp and has to be at location q at
time tq, will Alfred still make it on time if the (speed limits of the) road
network segments ... change, and how will that affect his time to spare?

These queries can be solved by computing and recomputing single space-time
prisms from p to q and checking the difference between arrival and departure
times at q.

104 Space-time prisms on road networks

Figure 5.11: Example 1: Road Network space-time prisms with their intersec-
tion.

• When Alfred leaves location p at time tp and has to be at location q at
time tq and James leaves location u at time tu and has to be at location
s at time ts, when and where can they meet for at least 15 minutes?

• When Alfred leaves location p at time tp and has to be at location q at
time tq and James leaves location u at time tu and has to be at location
s at time ts, where can they both meet up at earliest (or latest) and go
to location w, and how much time can they spend there?

To solve these queries we actually have to compute the space-time prisms and
their intersection. Then use this intersection to answer the query.

• Alfred works at location p and has a 30 minutes lunch break and his
walking speed is v, where can Alfred go eat (or is there a McDonalds

5.6. Conclusion and Future Work 105

Figure 5.12: Example 2: Road Network space-time prisms with their intersec-
tion.

Alfred can reach) and spend at least 15 minutes there?

To answer this final query we compute the space-time prism with the same
departure and arrival location. Then we check all food establishments in the
projection of this prism and verify which establishment allows a 15 minutes
stay.

The examples above show that these space-time prisms can answer real
life questions that involve planning.

5.6 Conclusion and Future Work

In this chapter, we presented fast algorithms to compute and visualize space-
time prisms on road networks where each edge in this network may have a

106 Space-time prisms on road networks

different speed limit. As proof of concept we implemented these algorithms in
Mathematica (available at [24]). We also presented an algorithm to decide
the alibi query for two moving objects on a straight line and on a road network,
respectively. The solution to this query turns out to be easier if the speed limit
is tied to the road network and not to the moving objects. Furthermore, we
concluded by presenting algorithms to visualize the intersection of two space-
time prisms on a road-network.

The main simplification in our setting is the assumption that segments in
the road network are bidirectional. We can modify our model to unidirectional
segments by observing the following. In Theorem 5.3, we note that space-time
prisms on road networks can be constructed by merely constructing the space-
time prisms for each segment and each vertex separately. It is not hard to show
that the space-time prisms in vertices, corresponding to Figure 5.4 and Cases
3 and 4 in Figure 5.5, reflect travel that is not constrained by direction on the
segment. Whereas the space-time prisms on segments, corresponding to Case
5 in Figure 5.5, reflects all trajectories constrained by a mandatory direction
from r to s on the segment.

In order to support unidirectional segments in our road network model,
we have to introduce labels on segments indicating the allowed directions of
movement. Our algorithm needs a slight modification in this setting. For
bidirectional segments, we proceed as described before. For unidirectional
segments, say from a vertex r to a vertex s where movement is only allowed
from r to s, we omit constructing the polygons from Figure 5.4 and only
construct the polygon as shown in Case 5 of Figure 5.5.

Note that once we allow unidirectional segments, a road network is not a
metric space anymore. However, this is not a necessary condition to construct
space-time prisms.

Obvious extensions to the work we presented, include but are not limited
to, investigating efficient methods to update space-time prisms when adding or
removing sample points. Another aspect to study is that of temporal changes
in the road network, like draw bridges or railway crossings.

6
Uncertain space-time prisms

Space-time prisms capture all possible time-space locations of a moving ob-
ject between sample points given speed limit constraints on its movement.
These sample points are usually considered to be perfect measurements. In
this chapter, we restrict ourselves to a road network and extend the notion
of sample points to sample regions, which are bounded, sometimes discon-
nected, subsets of space-time wherein each point is a possible location, with
its respective probability, where a moving object could have originated from
or arrived in. This model allows us to model measurement errors, multiple
possible simultaneous locations and even flexibility of a moving object.

We develop an algorithm that computes the envelope of all space-time
prisms that have an anchor in these sample regions and we developed an al-
gorithm that computes for any time-space point the probability with which a
space-time prism, with anchors in these sample regions, contains that point.
We implemented these algorithms in Mathematica to visualise all these
newly-introduced concepts.

6.1 From uncertainty on sample points to sample

regions and uncertain space-time prisms

In the preliminaries, the sample points were considered exactly measured data
and represented by space-time points. In real life however, a lot of sources
introduce errors on sample points. Measurement errors, for one, are introduced
when measuring locations using GPS, for example. When a human is asked to

107

108 Uncertain space-time prisms

keep track of its locations and time spent at those locations, errors get easily
introduced, e.g., “I left work between 5 and 5:30 P.M.”. Therefore, we extend
the concept of certain sample points to sample regions.

6.1.1 Uncertain anchors

In this section, we expand our model to the use of sample regions to supersede
the notion of sample points, but we will restrict ourselves to road networks.
For simplicity, we will start by defining a sample region on a line segment
and later expand this definition to road networks. Another simplification in
our model is that time and space are considered independent from each other.
This ensures that our sample regions are box-shaped in space-time and that
our model behaves in a polygonal fashion. We coin this rectangle a sample
region.

Moreover, in this sample region some subsets can be more likely than oth-
ers. This can be described using probability functions. We refer to Figure 6.1
for a conceptual representation of this model.

Definition 6.1. A sample region on a segment is a bounded subset of space-
time of all possible locations of a sample point. Let p = (xp, yp), q = (xq, yq) ∈
R2 be the spatial points bounding the segment and t−pq, t

+
pq ∈ R, where t−pq ≤

t+pq, the temporal boundaries of the region, meaning the region is bounded by
the rectangle 〈(t−pq, xp, yp), (t

+
pq, xp, yp), (t

+
pq, xq, yq), (t

−
pq, xq, yq)〉. We describe

this region by the 6-tuple Spq = (p, q, t−pq, t
+
pq, µpq, χpq), where χpq : R → R+

and µpq : [t−pq, t
+
pq] → R+ are independent probability functions and χpq : λ 7→

χpq(λ) where χpq is a probability function on the line (x, y) = (1−λ)p+λq.

We note that in the definition above we do not demand that χpq is restricted
to [0, 1]. The reason for this is that on a road network RN we will stitch a
finite number of these previously defined sample regions together and we want
these probability functions to integrate to one on all these regions combined.

Definition 6.2. A sample region S on a road network RN is a bounded subset
of space-time of all possible locations of a sample point on RN. In particular,
it is a finite set of sample regions on segments as defined in Definition 6.1,
S = ∪n

i=1Si where each Si is a sample region on a segment. Moreover, all the
Si are disjoint and integrating all the spatial probability functions over all the
spatial component of these sample regions adds up to one.

An uncertain trajectory sample is then a finite list of sample regions and
constitutes a new definition of trajectory samples.

This is illustrated in Figure 6.1.
We remark the following.

6.1. Anchor uncertainty and uncertain space-time prisms 109

t

x

t+pq

t−pq

xp xq

χpq

µpq

Figure 6.1: An example of a sample region with probability functions χpq and
µpq.

• We are not demanding that the regions stitch nicely together in time.
This allows us to model locations that are accessible at discrete intervals
in time. For example, shopping malls that are not open 24 hours a day.

• Secondly, we do not demand that they are continuous in space either.
This, in turn, allows us to model several probable departure and arrival
locations, and, as we will soon elaborate on, calculate a relative likelihood
for each region.

6.1.2 Uncertain space-time prisms

The next step is to adapt the space-time prism model to these sample re-
gions. This can be done in a straightforward manner as described in the next
definition.

Definition 6.3. Let RN be a road network and Sb and Se sample regions on
RN. An uncertain space-time prism between the sample regions Sb and Se is
the union of all space-time prisms with starting point in Sb and ending point
in Se. An additional constraint is that there needs to exist a space-time prism
from every point in Sb that has an endpoint in Se and vice versa.

The last condition ensures that our model makes sense. We want to model
possible locations but if there exists a point in a sample region that is not
an anchor for a space-time prism with an anchor in the next region, then the
moving object could not possibly have departed from that point. In that case
a distribution that is nonzero in that point does not make sense.

When every point in a sample region is equally probable then the distri-
bution function for time and space is a uniform distribution. To model those

110 Uncertain space-time prisms

points that are more probable around the center of a sample region than at
the edges, a normal distribution can be used.

6.2 Computing the envelope of the uncertain prism

In this section we introduce an algorithm that computes the uncertain space-
time prism, which envelopes the union of all space-time prisms that connect a
point from the starting sample regions to a point in the ending sample regions.
This algorithm is a slight adaptation of the algorithm we present in Chapter 5.
where also the proofs of the correctness of this algorithm can be found. We
consider each edge separately and it suffices that we compute, for both vertices
of that edge, the earliest arrival times and latest departure times.

The following observations will simplify the computations significantly. For
each edge, where we are constructing the uncertain prism, we cycle through
all the edges of the starting sample region. For each such edge we note that
the fastest path has to pass over one of the nodes of that edge. Moreover,
a path from the interior of such an edge is longer than a path that departs
from at least one of the nodes. So the earliest time you can reach a node
is the minimum of the road network distances to that node from all nodes
of the departure sample region at the earliest time of that region. Likewise,
the latest departure times at each node will equal the maximum of all road
network distances to all nodes of the arrival sample region at the latest time
of that region.

The major difference with the algorithm in Chapter 5 is the pre-computation
part of the algorithm. In the first step, we use an adapted breadth-first search
to pre-select the vertices that can be part of the space-time prism and ignore
the rest. In the second step we compute the earliest arrival and latest depar-
ture times for each vertex. This computation is not sufficient for the edges
that support sample regions, since these computations that do not take the
points in the interior into account.

PRECOMP: input= (RN,V,E, Sb, Se);

output= (RN′, {(t−u , t+u) | u ∈ RN′},VP ,EP)

Step 1. In this step we add vertices to the network and select those nodes
and vertices that can actually support the prism.

• For all Sb,i, Se,j, say such a region is spatially bounded by p, q ∈ R2. If p
is a vertex, then do nothing, else let r, s ∈ R2 be the vertices that bound
the edge that contains p. Remove that edge from the network, add the
vertex p to the network and add the edges bounded by r and p and the

6.2. Computing the envelope of the uncertain prism 111

edge bounded by p and s to the network. Repeat the same procedure
for q.

• The second part of this step consists of an adapted breadth-first search
algorithm where we keep looking for and storing vertices and edges until
their road network distance to any Sb,i or Se,j is larger than the maximal
difference in time between any pair (Sb,i, Se,j). Let tmax = maxi,j{t+e,j −
t−b,i | Sb,i = (pb,i, qb,i, t

−
b,i, t

+
b,i, µb,i, χb,i) and Se,j = (pe,j, qe,j, t

−
e,j, t

+
e,j, µe,j,

χe,j)}. The following steps need to be repeated for all {r | ∃i : Sb,i =
(p, q, t−, t+, µ, χ) or ∃j : Se,j = (p, q, t−, t+, µ, χ) and r = p or r = q}.
Initialise a queue with the node r and distance 0. Add r to the road
network RN′. Repeat the following steps until the queue is empty.

1. Remove the top element from the queue, which is a vertex s and a
distance ts.

2. For all the edges that s to a vertex p, do the following:

– If p has not yet been handled, then add the vertex p and the
edge connecting p and s to RN′ and mark this edge and vertex
as handled.

– If p has not been handled yet and ts + dRN(s, p) 6 tmax then
add the vertex p and the distance ts + dRN(s, p) to the queue.

– If p has been handled and ts + dRN(s, p) 6 tmax and ts + dRN(s,
p) 6 tp where tp is a previously recorded distance for p, then
add the vertex p and the distance ts + dRN(s, p) to the queue.

Step 2. In this step we compute the earliest arrival time and latest departure
time in each vertex, with respect to all the sample regions where we can leave
from and all regions where we can arrive in.

Let Vb = {(r, t−) | ∃i : Sb,i = (p, q, t−, t+, µ, χ) and r = p or r = q} and
Ve = {(r, t+) | ∃j : Se,j = (p, q, t−, t+, µ, χ) and r = p or r = q}.

Now we cycle through all the pairs (r, t−) contained in Vb and apply a
single-source shortest path algorithm (e.g., Dijkstra’s algorithm) for each r on
the graph RN′. For each vertex u in RN′ we store its smallest road network
time from r, i.e., the arrival time t−u = t− + dRN(r, u). For the first node r we
initialise the nodes u with that arrival time, for all other nodes r we set the
arrival time t−u to min{t−u , t− + dRN(r, u)}.

Again, we cycle through all the pairs (r, t+) contained in Ve and apply a
single-source shortest path algorithm (e.g., Dijkstra’s algorithm) for each r on
the graph RN′. For each vertex u in RN′ we store its largest road network
time from r, i.e., the arrival time t+u = t+ − dRN(r, u). For the first node r we

112 Uncertain space-time prisms

initialise the nodes u with that arrival time, for all other nodes r we set the
arrival time t+u to max{t+u , t+ − dRN(r, u)}.

When we make our last pass for the last element of Ve, we store each vertex
u for which t−u ≤ t+u in the set VP . In the set EP we store all edges that connect
to at least one vertex in VP .

The next step is to construct the polygons that constitute the space-time
prism. This step is identical to the algorithm 3D-space-time prism described
in Chapter 5. Since we already provided a correctness proof in that same
chapter we will omit to repeat this here. The only difference is that we need
to correct the polygons for the sample regions since our computations neglected
the internal points of the sample region. An example of this is illustrated in
Figure 6.2.

�������
�������
�������

�������
�������
�������

uncovered region

�������
�������
�������

�������
�������
�������

Figure 6.2: The omitted part of a sample region.

We can correct this by adding an extra, easy to compute, triangular poly-
gon for each sample region. For each starting region Sb,i = (p, q, t−, t+, µ, χ)

we add the polygon 〈(p, t−), (q, t−), (p+q
2 , dRN(p,q)

2)〉 as illustrated in Figure 6.2
on the right. Likewise, for each ending region Se,j = (p, q, t−, t+, µ, χ) we add

the polygon 〈(p, t+), (q, t+), (p+q
2 ,−dRN(p,q)

2)〉.
The result of this pre-computation algorithm, together with the 3D-space-

time prism-algorithm is shown in Figure 6.3. We note that unlike in Fig-
ure 5.2, where a prism starts and ends in a single point, this prism has a lot
of possible locations to start from and to arrive at.

6.3 Measuring spatio-temporal uncertainty and flex-
ibility with respect to sample regions

In this section, we go a step further and introduce the main contribution of this
paper. When we introduced sample regions, we used distributions functions

6.3. Measuring spatio-temporal uncertainty 113

Figure 6.3: An envelope of space-time prisms on sample regions.

to model the likelihood of every point in the sample region, but we have yet
to exploit those attributes of sample regions.

Let r be any time-space point inside the envelope of the uncertain space-
time prism. We know that r is covered by at least one space-time prism with a
starting point in the starting region and an ending point in the ending region.
Suppose, and this is the case for most points in the envelope, that there is
an entire subset of the sample regions consisting of points which are anchors
for space-time prisms that contain r. We can then measure, i.e., integrate the
distribution functions over these subsets by means of the distribution functions
we introduced in Definition 6.1, and we can choose to

(1) restrict ourselves to the starting regions,

(2) restrict ourselves to the ending regions,

(3) multiply the two numbers above.

In all three cases we get a number between zero and one. This is per construc-

114 Uncertain space-time prisms

tion of the sample regions.
In Case (1) we obtain the likelihood that the anchor of a space-time prism

that contains r is part of the starting regions. In Case (2) we obtain the
likelihood that the anchor of a space-time prism that contains r is part of the
ending regions. In Case (3) we obtain the simultaneous likelihood that the
anchor of a space-time prism that contains r is part of the starting and ending
regions. The fraction of the sample regions that have a starting and ending
point of a space-time prism that contains that particular space-time point r.

Definition 6.4. Let r be a time-space point on a road network RN and Sb, Se

sample regions on RN.

• The emanating fraction of r with respect to Sb equals the measure, with
respect to the distribution functions of Sb, of the subsets of Sb that
contain anchors p, with a smaller time coordinate than r of space-time
prisms on RN with anchors p and r.

• The absorbing fraction of r with respect to Se equals the measure, with
respect to the distribution functions of Se, of the subsets of Se that
contain anchors q, with a larger time coordinate than r of space-time
prisms on RN with anchors r and q.

• The combined fraction of r with respect to travel from Sb to Se equals
the product of (the emanating fraction of r with respect to Sb) with (the
absorbing fraction of r with respect to Se).

In the following section we show the surprisingly simple, i.e., polygonal,
shape of these subsets. Moreover we provide an algorithm to compute these
subsets and associated fractions as defined in Definition 6.4.

6.3.1 Algorithms

The algorithm we present here is based on the following observations, which
do not require proof.

Due to the additive nature of integrals, i.e., an integral over a surface
equals the sum of integrals over disjoint subsets that cover the surface, we can
treat each of the rectangular regions in space-time separately and add them
together once the computation is done. A sample region can thus be seen as
the sum of sample regions on straight edges of the road network.

Let r = (tr, xr, yr) be the time-space point for which we wish to compute
the fraction of space-time prisms that contain that point. For each of those
separate rectangular sample regions, we can distinguish between two cases.

6.3. Measuring spatio-temporal uncertainty 115

Either there exists a point s in the spatial part of the sample region for which
there exists more than one fastest path to r, or there does not. If this point
exists we simply divide the rectangular region into two new regions along the
temporal line through s. This operation ensures we are again in the latter
case, where there exists no spatial point, in the interior of the region, for
which there exists more than one fastest path to r. See Figure 6.4.

��������

two new regions

(ts, xs, ys)(ts, xs, ys)

fastest paths to (tr, xr, yr)

sample region

Figure 6.4: A divided sample region.

The second observation, which we will prove in Theorem 6.5, states that
it suffices to find all space-time paths that originate in the starting sample
region and end in r, and all space-time paths that originate in r and arrive in
the ending sample region.

The proof of the following theorem is trivial, the equivalence holds by the
very definition of a space-time prism.

Theorem 6.5. Let RN be a road network, p and q points on RN and r a time-
space point. There exists a space-time prism PRN(tp, p, tq, q) that contains r if
and only if there exists a trajectory from (tp, p) to (tq, q) on RN through r.

Though the proof is trivial, it holds the key to our algorithm, which is
based on the following two observations. Assume that the interior of the
sample region Sb does not contain a point with more than one path with the
same road network time to r. We will show in the algorithm below how to
split the sample regions to smaller regions that satisfy that condition.

1. First, a fastest path that leads to r and contains the edge contained by Sb

either intersects Sb, goes over Sb, i.e., all its time coordinates are larger
than those of Sb, or under Sb, i.e., all its time coordinates are smaller
than those of Sb. If it goes over Sb then all points of Sb clearly have a
path to r, since any moving object in a point in Sb can just wait until its
time coordinate equals that of the fastest path and leave to r following
that path. Likewise, if the path goes under Sb then no moving object
departing from Sb is able to reach r in time. If the path intersects Sb,

116 Uncertain space-time prisms

then all space-time points of Sb with a time coordinate smaller than the
point on the path with the same spatial coordinates have a path that
reaches r in time. This is depicted in the shaded region in Figure 6.5(a).

2. Secondly, a fastest path that emanates from r and contains the edge
contained by Se either intersects Se, goes over Se or under Se. If it goes
under Se, i.e., all its time coordinates are smaller than those of Se, then
all points of Se can be reached from r, since any moving object that
departs from r can reach a point with spatial coordinates in Se and wait
until its time coordinate equals that of a point in Se. Likewise, if the
path goes over Se, i.e., all its time coordinates are greater than those
of Se, then no moving object departing from r is able to reach Se in
time. If the path intersects Se, then all space-time points of Se with a
time coordinate greater than the point on the fastest path with the same
spatial coordinates have a path from r that can be reached in time. This
is depicted in the shaded region in Figure 6.5(b).

������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

t t

(a) (b)

x x

Sb

Se

Figure 6.5: Subsets of sample regions that are possible to connect to a fixed
space-time point.

These observations are necessary and sufficient to compose the algorithm.
Once these areas have been determined we can integrate the distribution func-
tions over them and compute a probability for a specific space-time point. The
nature of these areas allow easy computation of these integrals.

Let r = (tr, xr, yr) be the space-time point for which we want to compute
the fraction of space-time prisms covering it. Let Sb be the starting sample
region and Se be the ending sample region. Let Sb,i be the restriction of Sb to
a single edge and i be a natural number to count the number sample regions
on a segment that Sb contains, the definition of Se,i is analogous. The first

6.3. Measuring spatio-temporal uncertainty 117

step in the algorithm is to compute appropriately sized sample regions. These
are regions where each point in the spatial interior has a unique fastest path
to the given space-time point r.

���� ����(ts, xs, ys)

sample region

fastest paths to (tr, xr, yr)

d
“

c−b+ad
2a

, b+c−ad
2

”

b

t

c

t = −ax + c

x

t = a(x − d) + b

Figure 6.6: How to split a sample region.

The following algorithm takes a time-space point r = (tr, xr, yr) as input
and outputs three numbers: the emanating fraction Sb,r of r with respect to
Sb, the absorbing fraction Se,r of r with respect to Se and the fraction Sr of r
with respect to travel from Sb to Se.

PointProbability: input= (RN,V,E, tr, xr, yr, Sb, Se);
output= (Sb,r,Se,r,Sr)

Initialisation. Set Sb,r and Se,r equal to 0.

Step 1. Let Sb,i = (p, q, t−pq, t
+
pq, µpq, χpq) where p = (xp, yp) and q = (xq, yq).

The following needs to be repeated for each Sb,i. Let dp = tr − dRN((xr, yr),
(xp, yp)), dq = tr − dRN((xr, yr), (xq, yq)), dpq = dRN((xp, yp), (xq, yq)) and vpq

be the speed limit on the segment that supports Sb,i.

• Case 1: dp ± dpq = dq.

– If dp − dpq = dq, then interchange the roles of p and q, now we have
dp + dpq = dq.

– If dq 6 t−pq, then do nothing and move on to the next Sb,i. See
Figure 6.7 on the left.

– If dp > t+pq, then let replace Sb,r by Sb,r +
∫ 1
0 χpq and move on to

the next Sb,i. See Figure 6.7 on the right.

– Else If dp 6 t−pq, then let A be the area bounded by the polygon
〈(dp, xp, yp), (dp, xq, yq), (dq , xq, yq)〉 else let A be the area bounded

118 Uncertain space-time prisms

x

t+pq

t−pq

p q

dq

dp

t

dq

dp

xp q

t

t−pq

t+pq

Figure 6.7: Case illustration.

by the polygon 〈(dp, xp, yp), (t
−
pq, xp, yp), (t

−
pq, xq, yq), (dq, xq, yq)〉. Re-

place Sb,r by Sb,r +
∫ ∫

A µpχp. See Figure 6.8 on the left for the
first polygon, and on the right for the second polygon.

dq

dp

xp q

t−pq

t+pq

t

xp q

t−pq

t+pq

dq

dp

t

Figure 6.8: Case illustration.

We note that although A is likely to exceed the boundary of Sb,i, the
integral is still well defined because µp is zero outside Sb,i.

• Case 2: dp ± dpq 6= dq

If this is the case we have to compute the point on the segment where
the two fastest paths from this segment to r intersect and distinguish
three separate sub-cases. The first is the easiest, when dp, dq 6 t−pq then
this inequality will also hold for the time-coordinate where the two fastest

6.3. Measuring spatio-temporal uncertainty 119

paths from r intersect, in that case none of the points from Sb,i will be
able to reach r in time.

– If dp, dq 6 t−pq, then do nothing and proceed to the next sample
region. See Figure 6.9 on the left.

If all time coordinates satisfy
dp+dq−dpq

2 , dp, dq > t+pq then all points of
Sb,i will be able to reach r in time. In that case it is pointless to compute
intersections and divide the sample region. Hence,

– If
dp+dq−dpq

2 , dp, dq > t+pq, then replace Sr by Sr+
∫ 1
0 χpq and proceed

to the next sample region. See Figure 6.9 on the right.

dq

x

t+pq

t−pq

p q

dp

t

dq

dp

xp q

t

t−pq

t+pq

Figure 6.9: Case illustration.

In the remaining case one of the fastest paths from r intersects Sb,i

and we need to split Sb,i into two regions such that all points in those
regions have a unique fastest path to r. We apply the same strategy as
in Chapter 5. As shown in Figure 6.6, we merely need to reduce our
computations to the two-dimensional case, compute the x-coordinate of
the intersection and multiply that by an appropriate unit vector. In this
case Sb,i will be split at the spatial point

s = (xs, ys) = (xp, yp) +

(

dp − dq + dpq

2/vpq

)

· (xq − xp, yq − yp)
√

(xq − xp)2 + (yq − yp)2
.

– Else Replace Sb,i by the two new regions S′
b,i and S′′

b,i where

- S′
b,i = (p, s, t−pq, t

+
pq, µpq, χpq ◦ f) where

f(λ) = λ ·
√

(xs − xp)2 + (ys − yp)2

(xq − xp)2 + (yq − yp)2
;

120 Uncertain space-time prisms

- S′′
b,i = (s, q, t−pq, t

+
pq, µpq, χpq ◦ g) where

g(λ) = λ ·
√

(xq − xs)2 + (yq − ys)2

(xq − xp)2 + (yq − yp)2
+

√

(xs − xp)2 + (ys − yp)2

(xq − xp)2 + (yq − yp)2
;

and store dp for the vertex (xp, yp), dq for the vertex (xq, yq) and
dp+dq−dpq

2 in the vertex (xs, ys) to avoid re-computation in Case 1.
Now proceed as in Case 1 for each of these two new regions.

Step 2. The procedure Se,i is very much like the one outlined in Step 1, except,
as indicated in Figure 6.5, we need to construct the polygons on the other side
of the fastest path.

Let Se,i = (p, q, t−pq, t
+
pq, µpq, χpq) where p = (xp, yp) and q = (xq, yq). The

following needs to be repeated for each Se,i. Let dp = tr+dRN((xr, yr), (xp, yp)),
dq = tr + dRN((xr, yr), (xq, yq)), dpq = dRN((xp, yp), (xq, yq)) and vpq be the
speed limit on the segment that supports Se,i.

• Case 1: dp ± dpq = dq

– If dp − dpq = dq, then interchange the roles of p and q, now we have
dp + dpq = dq.

– If dp > t+pq, then do nothing and move on to the next Se,i.

– If dq 6 t−pq, then let replace Se,r by Se,r +
∫ 1
0 χpq and move on to

the next Se,i.

– Else If dq > t+pq, then let A be the area bounded by the polygon
〈(dp, xp, yp), (dq, xp, yp), (dq, xq, yq)〉 else let A be the area bounded
by the polygon 〈(dp, xp, yp), (t

+
pq, xp, yp), (t

+
pq, xq, yq), (dq, xq, yq)〉. Re-

place Se,r by Se,r +
∫ ∫

A µpχp.

We note that although A is likely to exceed the boundary of Se,i, the
integral is still well defined because either µp is zero outside Se,i.

• Case 2: dp ± dpq 6= dq

If this is the case we have to compute the point on the segment where the
two fastest paths from this segment to r intersect and distinguish three
separate sub-cases. The first is the easiest, when dp, dq 6 t−pq then this
inequality will also hold for the time-coordinate where the 2 fastest paths
from r intersect, in that case none of the points from Sb,i will be able to
reach r in time.

– If dp, dq > t+pq, then do nothing and proceed to the next sample
region.

6.3. Measuring spatio-temporal uncertainty 121

If all time coordinates satisfy
dp+dq+dpq

2 , dp, dq 6 t−pq then any moving
point starting from r will be able to reach all points in Se,i in time. In
that case it is pointless to compute intersections and divide the sample
region. Hence,

– If
dp+dq+dpq

2 , dp, dq 6 t+pq, then replace Se,r by Se,r +
∫ 1
0 χpq and

proceed to the next sample region.

In the remaining case one of the fastest paths from r intersects Se,i

and we need to split Se,i into two regions such that all points in those
regions have a unique fastest path to r. We apply the same strategy as
in Chapter 5. As illustrated in Figure 6.6, we merely need to reduce our
computations to the two-dimensional case, compute the x-coordinate of
the intersection and multiply that by an appropriate unit vector. In this
case Se,i will be split at the spatial point

s = (xs, ys) = (xp, yp) +

(

dq − dp + dpq

2/vpq

)

· (xq − xp, yq − yp)
√

(xq − xp)2 + (yq − yp)2
.

– Else Replace Se,i by the two new regions S′
e,i and S′′

e,i where
- S′

e,i = (p, s, t−pq, t
+
pq, µpq, χpq ◦ f) where

f(λ) = λ ·
√

(xs − xp)2 + (ys − yp)2

(xq − xp)2 + (yq − yp)2
;

- S′′
e,i = (s, q, t−pq, t

+
pq, µpq, χpq ◦ g) where

g(λ) = λ ·
√

(xq − xs)2 + (yq − ys)2

(xq − xp)2 + (yq − yp)2
+

√

(xs − xp)2 + (ys − yp)2

(xq − xp)2 + (yq − yp)2
;

and store dp for the vertex (xp, yp), dq for the vertex (xq, yq) and
dp+dq−dpq

2 in the vertex (xs, ys) to avoid re-computation in Case 1.
Now proceed as in Case 1 for each of these two new regions.

Output Sb,r, Se,r and Sr = Sb,r · Se,r.

Now that we have an algorithm for an individual point, we can construct
one to visualise this for all points of an uncertain space-time prism envelope.
However, we will not do this for all points, we divide the envelope in smaller
regions by overlaying it with a regular grid, pick a representative point for
each region, compute its probability and assign a suitable colour to that entire
region.

122 Uncertain space-time prisms

The 3D-space-time prism algorithm outputs a set of polygons. Again,
we cycle over all the edges of the road network that contain such a polygon.
For each such edge we intersect the polygons with a two-dimensional grid
on that edge, the size of the grid depends on a pre-chosen resolution. The
intersection gives again a set of polygons, where no polygon is larger than the
cells of the grid. For each of those we compute the center of mass which we
will feed to our PointProbability-algorithm. This in turn yields a number,
between zero and one, which we associate with that center of mass and its
polygon and use it to assign an appropriate colour to the polygon.

Figure 6.10: A space-time prism with the emanating fraction (left) and ab-
sorbing fraction (right) coloured in shades of red. The closer the colour comes
to red, the higher the value of the fractions.

We implemented these algorithms in Mathematica as a proof-of-concept.
In Figure 6.10 on the left, we restricted our algorithm to compute the emanat-
ing fraction of each time-space point. In Figure 6.10 on the right we restricted
our algorithm to compute the absorbing fraction of each time-space point. In
Figure 6.11 our algorithm computed the emanating fraction of each time-space
point with respect to travel from the originating regions to the destination re-
gion. In all these examples we assumed a uniform distribution on the sample
regions.

6.4. Applications 123

Figure 6.11: A space-time prism with the fraction of each space-time point
coloured in shades of red.

6.4 Applications

In the previous sections, we introduced a multitude of new concepts and quan-
tities. Each of those separately and combined can be used in a number of appli-
cations which we outline here. Such applications include measuring flexibility
and error analysis.

6.4.1 Measuring flexibility

At the end of the previous section, we generated a fully coloured prism where
all time-space points indicated their fraction simultaneously.

Assume that in a point r the emanating fraction of r with respect to Sb,
as defined in Definition 6.4, is close to one. This means that we can reach r
from most of Sb. More importantly, this means there exists a path from Sb

that reaches the spatial component of r and allows us to spend a time at this
location that equals almost all of the temporal height of Sb. We illustrate this

124 Uncertain space-time prisms

in Figure 6.12. The shaded part of Sb covers almost all of Sb, which means the
emanating fraction of r with respect to Sb is close to one. A fastest path from
any point on the bottom of Sb to the spatial location of r would be parallel in
space-time to the fastest path drawn in Figure 6.12. Moreover, suppose the
temporal height of Sb equals △t, then any such path to the right of s from
the bottom of Sb arrives at least △t earlier at the spatial location of r, we
can thus spend at least △t-time at the spatial location of r. If we leave from
the left of s we have a little less than △t-time to spend. So, the higher the
emanating fraction, the more flexibility we have to choose when and where to
leave from Sb and vice versa.

Likewise, assume that in a point r the absorbing fraction of r with respect
to Se, as defined in Definition 6.4, is close to one. This means that we can
reach most of Se from r. More importantly, we can spend an amount of time,
that equals almost all of the temporal height of Se, at the spatial component
r before we have to leave again and still be able to reach Se in time.

This gives us a measure of flexibility we have with respect to the starting
and ending regions at each location at each moment in time. A more practical
way is to apply a kind of spatial projection on the road network. If we project,
for each location, the maximum of these fractions in time onto the road net-
work, we immediately obtain the flexibility we have to reach those locations
with respect to our schedule or probable locations to leave from or arrive at.

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

Sb

s

fastest path to r

Figure 6.12: Illustration of flexibility.

6.4.2 Measurement errors and space-time prisms

A common strategy in error analysis is to model errors on observed values and
analyse how these propagate onto derived values. Using the envelope from
Section 6.2, we can do two things.

Firstly, since our sample regions are bounded sets by definition, the enve-

6.5. Conclusions and future work 125

lope is the union of all possible space-time prisms with anchors in the sample
regions.

Secondly, as is common in error analysis, we can compute a confidence
region on the spatial and temporal component separately of each region, this
is again a box-shaped region and compute the envelope with that confidence
region as a new sample region. We note that we can not use a simultaneous
confidence region for both space and time since those regions are usually el-
liptical in nature. This again returns the union of all space-time prisms with
anchors in those confidence regions.

6.5 Conclusions and future work

Space-time prisms model uncertainty between sample points, which are usu-
ally considered to be perfect measurements. In this chapter we extended the
notion of sample points to sample regions, which are bounded, sometimes dis-
connected, subsets of space-time wherein each point is a possible location, with
its respective probability, where a moving object could have originated from
or arrived in. This model allows us to model measurement errors, multiple
possible simultaneous locations and even flexibility of a moving object.

We developed an algorithm that computes the envelope of all space-time
prisms that have an anchor in these sample regions and we developed an
algorithm that computes for any time-space point the probability with which
a space-time prism, with anchors in these sample regions, contains that point.

We left out a complexity consideration. It is straightforward once you
have the number of nodes obtained from the pre-computation, but obtaining
that number however is not so trivial. This would rely on defining suitable
heuristics that relate the width of temporal intervals to the number of possible
distinct edges that can be travelled on, which in turn also relies on network
density. But these are all aspects we left out in our simplified model and can
be tackled in future work.

As for scalability, when treating a chain of prisms, i.e., a lifeline necklace,
each prism can be computed separately and completely independent. Our
algorithm is thus very scalable on large trajectory samples.

In the simplest case, when all distributions on space and time are uniform,
the uncertain prism has a lot of symmetry. Further study is needed to exploit
this symmetry and speed up the computation.

In this chapter we restricted our sample regions to box shapes, this can
easily be extended to other shapes because the intersection we need to compute
remains the same, i.e., the intersection of one or two half-spaces with the
sample region.

126 Uncertain space-time prisms

One aspect that has not been studied in this paper is a measure to rank
a space-time point’s probability inside a single prism. Intuitively one can
imagine that points near the edge of the prism are less likely that points on
the interior, however, a suitable likelihood function to express this intuition
has not been found. A logical step is then to figure out a way to combine both
measures and interpret them in a sensible manner.

7
Conclusion

In this final chapter we reflect on our contributions and give a short introduc-
tion to some remaining problems. The quantity that expresses the amount of
change over time is speed and that quantity keeps recurring throughout all
chapters. Speed is indispensable in the study of moving object databases and
is actually there all along in spatio-temporal databases, where positions are
stored along with a time stamp. Even GPS-equipped devices store a computed
speed value.

In Chapter 3, we determined the class of transformations of trajectories
for which speed is invariant, we then extended this class to all transformations
that map space-time prisms onto space-time prisms. We used this to iden-
tify a query language, FO(Before,minSpeed, S̃), on a spatio-temporal database
with which we are able to express queries about moving objects and their
speed. It turns out that this language also comes across as natural to express
properties of space-time prisms. We prove the soundness and completeness
for this language when it comes to V-invariant queries. The challenge here is
to do the same for road networks. The class of transformations will likely not
change much but delivering a complete query language to express properties of
trajectories and space-time prisms on road networks is not trivial. The main
reason is that the underlying space is different. Movement on road networks
is not only constrained to the network, the speed of a trajectory on a road
network is also bound, on a per-segment basis. Distances on road networks is
another obstacle to overcome. A road network is no longer a metric space and
distances are not measured by a formula anymore, but by an algorithm which

127

128 Conclusion

depends on the networks itself. Nor can you call it a distance anymore since
a distance between two points might not exist and the distance from A to B
is usually not equal to the distance from B to A.

The interesting aspect of space-time prisms is that they, given an upper
bound on a moving object’s speed, capture all possible movement of this ob-
ject. It is the subset of space-time of all spatio-temporal points where a moving
object could have been. In this sense it captures the uncertainty of a mov-
ing object’s position between measured time-stamped locations, i.e., sample
points. A query of interest in this model is the alibi query. This query decides
whether or not two moving objects could have met, in which case they have
an alibi for not doing so. Answering this query in the space-time prism model
comes down to deciding whether two space-time prisms intersect. Space-time
prisms have an FO(+,×, <, 0, 1)-expression and the alibi query can then be
expressed as a quantifier elimination problem. Since the first-order language
over the real number allows quantifier elimination we know that a quantifier-
free version of this expression exists and can be computed. The algorithms
to do this [15, 30, 32] require a lot more computation power than we have
available at this time. In Chapter 4, we first present a solution to the alibi
query for movement in one dimension. Then we proceed to movement in two
dimensions. We classified the intersection of two space-time prisms into three
cases, all of which have, using a geometric argument, a quantifier-free expres-
sion. This results in a quantifier-free formula that can be used to effectively
evaluate the alibi query. There are some challenges left here. Firstly, there is
the question if such a formula exists for more the intersection of more than two
space-time prisms. Secondly, to compute the spatial and temporal projection
of this intersection remains unexplored, but interesting, territory.

Since most of our movement is constrained to road networks, a lot of the
unconstrained space-time prism is wasted. However, a space-time prism on
a road network is not merely the intersection of the network and the un-
constrained prism, nor is it straightforwardly derived from one-dimensional
space-time prisms. In Chapter 5, we adapt the concept of a space-time prism
to a road network, moreover, we provide algorithms to compute its structure
and developed software to visualise these prisms. Completing the results from
the previous chapter, we also provide an algorithm and implementation to
solve the alibi query on road networks.

In Chapter 6, we move on from sample points to sample regions. Until
now, sample points were considered exact measurements. The cylinder model
allowed measurement errors and had this advantage over the space-time prism
model. We introduce sample regions on road networks, box shaped regions in
space-time to replace the sample point and model measurement uncertainty

129

in space and time. To cope with different types of errors and to distinguish
between measured and self-reported errors, we added probability functions
to model the different scenarios. We study how these errors and their prob-
abilities propagated through a space-time prism. We create an algorithm
to compute the fraction of space-time prisms that cover any spatio-temporal
point and implemented these to create visualisations. One challenge concern-
ing these space-time prisms is to study the probability of a trajectory inside
a prism.

8
Publications

The results presented in this thesis have been published in several papers. We
list these publications here.

Chapter Reference

3 [17, 19]
4 [16]
5 [18]
6 submitted

131

Bibliography

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communi-
cations of the ACM, 26(11):832–843, 1983.

[2] J. F. Allen and G. Ferguson. Actions and events in interval temporal
logic. Journal of Logic and Computation, 4(5):531–579, 1994.

[3] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1):269–271, December 1959.

[4] M. Egenhofer. Approximation of geopatial lifelines. In SpadaGIS, Work-
shop on Spatial Data and Geographic Information Systsems, 2003. Electr.
proceedings, 4p.

[5] M. Egenhofer and K. Hornsby. Modeling moving objects over multiple
granularities. Annals of Mathematics and Artificial Intelligence, 36(1–
2):177–194, 2002.

[6] F. Geerts, S. Haesevoets, and B. Kuijpers. A theory of spatio-temporal
database queries. ACM Transactions on Computational Logic, 2008. To
appear; see also http://arxiv.org/abs/cs.DB/0503012.

[7] F. Geerts and B. Kuijpers. Linear approximation of planar spatial
databases using transitive-closure logic. In Proceedings of the 19th ACM
SIGACT-SIGART-SIGMOD Symposium on Principles of Database Sys-
tems (PODS’00), pages 126–135. ACM Press, 2000.

[8] F. Geerts, B. Kuijpers, and J. Van den Bussche. Linearization and
completeness results for terminating transitive closure queries on spatial
databases. SIAM Journal on Computing, 35(6):1386–1439, 2006.

[9] Floris Geerts. Moving objects and their equations of motion. In Con-
straint Databases (CDB’04), volume 3074 of Lecture Notes in Computer
Science, pages 41–52. Springer, 2004.

133

134 Bibliography

[10] Floris Geerts, Sofie Haesevoets, and Bart Kuijpers. First-order com-
plete and computationally complete query languages for spatio-temporal
databases. ACM Trans. Comput. Log., 9(2), 2008.

[11] R. Güting and M. Schneider. Moving Object Databases. Morgan Kauf-
mann, 2005.

[12] M. Gyssens, J. Van den Bussche, and D. Van Gucht. Complete geometric
query languages. Journal of Computer and System Sciences, 58(3):483–
511, 1999.

[13] T. Hägerstrand. What about people in regional science? Papers of the
Regional Science Association, 24:7–21, 1970.

[14] E. Helly. über mengen konvexer körper mit gemeinschaftlichen punkten.
Jber. Deutsch. Math. Vereinig., 32:175–176, 1923.

[15] H. Hong. QEPCAD — quantifier elimination by partial cylindrical alge-
braic decomposition. 1990. http://www.cs.usna.edu/ qepcad/B/ QEP-
CAD.html.

[16] B. Kuijpers, R. Grimson, and W. Othman. An analytic solution to the
alibi query in the space-time prisms model for moving object data. In-
ternational Journal of Geographical Information Science, To Appear.

[17] B. Kuijpers and W. Othman. Trajectory databases: Data models, un-
certainty and complete query languages. In Proceedings of the 11th In-
ternational Conference on Database Theory (ICDT’07), volume 4353 of
Lecture Notes in Computer Science, pages 224–238, 2007.

[18] B. Kuijpers and W. Othman. Modelling uncertainty of moving objects
on road networks via space-time prisms. International Journal of Geo-
graphical Information Science, To appear.

[19] B. Kuijpers and W. Othman. Trajectory databases: data models, uncer-
tainty and complete query languages. Journal of Computer and System
Sciences, To appear.

[20] H.J. Miller. Modeling accessibility using space-time prism concepts within
geographical information systems. International Journal of Geographical
Information Systems, 5:287–301, 1991.

[21] H.J. Miller. A measurement theory for time geography. Geographical
Analysis, 37(1):17–45, 2005.

Bibliography 135

[22] H.J. Miller and Y. Wu. Gis software for measuring space-time accessibility
in transportation planning and analysis. Geoinformatica, 4:141–159, 2000.

[23] Barrett O’Neill. Elementary Differential Geometry. Academic Press,
www.apnet.com, 2nd edition, 1997. 482 pages.

[24] W. Othman. Implementations of spatio-temporal algorithms. 2007.
http://othmanw.submanifold.be.

[25] J. Paredaens, G. Kuper, and L. Libkin, editors. Constraint databases.
Springer-Verlag, 2000.

[26] D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-object
representations. In Advances in Spatial Databases (SSD’99), volume 1651
of Lecture Notes in Computer Science, pages 111–132, 1999.

[27] A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux. Handbook of First
Order Partial Differential Equations. Taylor & Francis, 2002.

[28] P. Revesz. Introduction to Constraint Databases. Springer-Verlag, 2002.

[29] W. Schwabhäuser, W. Szmielew, and A. Tarski. Metamathematische
Methoden in der Geometrie. Springer-Verlag, 1983.

[30] Thomas Sturm. Redlog. 2007. http://www.algebra.fim.uni-
passau.de/ redlog/.

[31] J. Su, H. Xu, and O. Ibarra. Moving objects: Logical relationships and
queries. In Advances in Spatial and Temporal Databases (SSTD’01), vol-
ume 2121 of Lecture Notes in Computer Science, pages 3–19. Springer,
2001.

[32] Eric Weisstein. Mathematica. 2007. http://www.wolfram.com.

[33] O. Wolfson. Moving objects information management: The database
challenge. In Proceedings of the 5th Intl. Workshop Next Generation In-
formation Technologies and Systems, pages 75–89. Springer, 2002.

Samenvatting

Deze thesis raakt aan verschillende onderzoeksgebieden. We behandelen en
combineren onderwerpen uit de Constraint Database Theory, Geographical
Information Science (GIS) en zelfs toepassingen uit Time Geography. De
gemeenschappelijke noemer van al deze gebieden zijn moving object databases
(MODs), databases van bewegende objecten.

Tegenwoordig zijn meer en meer apparaten, zoals GSMs en navigatietoe-
stellen, uitgerust met locatie bewuste technologie, oftewel location aware tech-
nology (LAT). Deze toestellen, hetzij op mensen, voertuigen of dieren, produ-
ceren trajecten. Er zijn twee soorten trajectdata. Ten eerste zijn er trajecten,
oftewel krommen in het reële vlak R2 geparametrizeerd door de tijd. Ten
tweede beschouwen we traject samples, dewelke vooral bekend zijn bij MODs,
deze zijn eindige sequenties van tijd-tuimte punten (elementen van R × R2).
Een trajectdatabase bevat dan een eindig aantal trajecten of traject samples
die voorzien zijn van een label.

8.1 Snelheid en space-time prisms

De meest natuurlijke grootheid die beweging van een object beschrijft, is snel-
heid. Deze grootheid geeft per definitie de mate weer waarin een object zijn
positie wijzigt in functie van de tijd. Daarom zijn snelheid en snelheidslimieten
centraal in deze thesis.

Er zij verschillende manieren om een traject te reconstrueren van een tra-
ject sample, lineaire interpolatie is de meest populaire techniek om dit te doen
(zie pagina 85 van [11]). Maar deze techniek veronderstelt dat het object tus-
sen de sample punten zich in een rechte lijn beweegt en dit tegen de minimale
snelheid nodig om het volgende punt op tijd te bereiken. Dit is realistisch als
de sample punten frequent en regelmatig zijn. Het is echter realistischer te
veronderstellen dat een object een bovengrens heeft op zijn snelheid, die ofwel
fysiek bepaald is, ofwel bij wet is vastgelegd zoals op wegennetwerken. Met

137

138 Bibliography

zo’n bovengrenzen heeft men reeds een onzekerheidsmodel opgebouwd waarin
men space-time prisms tussen opeenvolgende sample punten beschouwd. En-
kele eigenschappen van dit model werden reeds enkele jaren geleden behandeld
door de GIS gemeenschap, onder andere door Pfoser en Jensen [26], Egenhofer
en Hornsby [4, 5] en Miller [21], maar deze space-time prisms waren reeds ge-
kend in de time geography van Hägerstrand in de jaren 70 [13].

Als een object zich vrij kan bewegen in elke richting, dan is het space-time
prism de doorsnede van twee kegels (eentje met als top die wijst in de richting
van de tijd en eentje waarvan de top tegen de richting van de tijd wijst) in
ruimte-tijd en bevat het alle mogelijke trajecten van bewegende objecten die
zich van het ene punt naar het andere begeven met als enige beperking dat
ze zich aan de snelheidslimiet houden. Egenhofer noemt een keten van zulke
space-time prisms een lifeline necklace [4]. Figuur 8.1 illustreert het concept
van deze space-time prisms en een lifeline necklace.

����

����

��
��
��
��

��
��
��
��

t

x

y

Figure 8.1: Een space-time prism (links) en een lifeline necklace (rechts).

Bibliography 139

8.2 Volledige querytalen

Snelheid is niet enkel van belang bij het opstellen van onzekerheidsmodellen.
Bij het bevragen van traject data komen verschillende fysische grootheden ter
sprake waarvan snelheid de meest belangrijke is. Geerts ontwikkelde een model
waarin men de bwegingsvergelijkingen van een object direct op voorhanden
heeft, in plaats van traject samples, hij veronderstelde ook dat de werkelijke
snelheid altijd gekend was [9]. Als we vragen willen stellen over snelheid, dan is
het ook belangrijk te weten welke transformaties van tijd-ruimte, voorgesteld
door R × R2, de snelheid van een traject onveranderd laten. Deze groep van
transformaties noemen we V, en zijn samengesteld uit affiniteiten van de tijd
met orthogonale transformaties van de ruimte en ruimtelijke homothetieën
met dezelfde schalingsfactor als de temporele affiniteit en translaties. Geerts
et al. [10], behandelen transformaties die de snelheid onveranderd laten, maar
zij gaan uit van ruimtelijke transformaties die een functie zijn van enkel de tijd.
De resultaten die we in deze thesis bekomen gelden voor algemene afleidbare
transformaties van tijd-ruimte. In Hoofdstuk 3 tonen we aan dat de groep V
ook de transformaties omvatten die space-time prisms invariant laten. Dus
queries die met snelheid te maken hebben zijn invariant voor transformaties
van V, net zoals queries die met onzekerheid in termen van space-time prisms
omgaan. Juist omdat queries die snelheid in acht nemen en queries die omgaan
met onzekerheid door middel van space-time prisms, is het aangeraden een
querytaal te gebruiken die invariant is onder transformaties van V. Space-
time prisms zijn al eerder in een onzekerheidscontext bestudeerd [4, 5, 21, 26],
maar nog niet in de context van een querytaal.

Als uitgangspunt om trajectdatabases te bevragen, gaan we uit van een
twee-ledige logica gebaseerd op de eerste orde logica over de reële getallen, in
dewelke we beschikken over label variabelen en reële variabelen. Eerste orde
logica over de reële getallen is reeds uitvoerig bestudeerd in de context van
Constraint Databases [25]. Deze logica is expressief genoeg om eigenschappen
van snelheid en space-time prisms uit te drukken. We merken op dat de V-
invariante queries een onbeslisbare klasse vormen. Bovendien tonen we aan
dat deze taal bevat zit in een drie-ledige logica, dewelke label variabelen, tijd-
ruimte puntvariabelen en snelheidsvariabelen (positieve reële getallen) bevat,
en welke twee eenvoudige predicaten bevat: Before(p, q) en minSpeed(p, q, v).
De eerste drukt uit dat voor twee tijd-ruimte punten p en q, tijd-component
van p kleiner is dan die van q. De tweede drukt uit dat de minimale snelheid
nodig om q vanuit p te bereiken gelijk is aan v. Deze logica laat veeltermonge-
lijkheden toe op de snelheidsvariabelen. We tonen aan, door middel van deze
twee conceptueel intuitieven predicaten, dat we alle V-invariante eerste orde
queries kan uitdrukken. Deze logica laat ons toe alle queries over snelheid van

140 Bibliography

trajecten en onzekerheid door middel van space-time prisms uit te drukken.
We kunnen zelfs het predicaat inBead(r, p, q, v), dat uitdrukt dat r zich in het
space-time prism van p en q met snelheidslimiet v bevindt, uitdrukken in deze
taal.

We tonen ook aan dat een programmeertaal, gebaseerd op deze drie-ledige
logica, in dewelke we relaties kunnen aanmaken en waarin we beschikken over
een while-loop met eerste orde stop condities, volledig is voor de berekenbare
V-invariante queries op traject databases. De bewijzen van deze volledigheids-
resultaten zijn geinspireerd door eerder werk over volledige talen op spatiale
databases [12] en over spatio-temporele databases [10]. De taal die we hier
voorstellen is veel meer gebruikers-gericht dan de taal voorgesteld door Geerts
et al. [10], vooral omdat onze taal gebaseerd is op snelheid in plaats van meet-
kundige predicaten.

8.3 Kwantoreliminatie en de alibi query

Een interessante query die reeds bestudeerd werd door Egenhofer en Mil-
ler [4, 5, 21], is de alibi query. Deze booleaanse query vraagt of twee bewegende
objecten, gegeven door traject samples en snelheidslimieten, elkaar fysiek ont-
moet kunnen hebben. Het komt erop neer te kunnen beslissen of twee lifeline
necklaces van space-time prisms van deze bewegende objecten een niet-lege
doorsnede hebben of niet. Dit probleem heeft een praktische oplossing als
we efficient kunnen nagaan of twee space-time prisms een niet-lege doorsnede
hebben of niet.

Benaderende oplossingen zijn reeds voorgesteld [4], maar een exacte oplos-
sing bestaat ook. We tonen aan dat de alibi query een uitdrukking heeft in
het constraint database model door middel van een eerste orde constraint da-
tabase query [19, 25]. Het is gekend dat eerste orde constraint queries effectief
geevalueerd kunnen worden en dat er implementaties bestaan van kwantore-
liminatie algoritmen voor eerste orde logica over de reële getallen om deze
queries te evalueren, zie Hoofdstuk 2 van [25]. Experimenten met software
zoals QEPCAD [15], RedLog [30] en Mathematica [32] op meerdere space-
time prisms tonen aan dat het beslissen of twee concrete space-time prisms een
doorsnede hebben kan berekend worden op gemiddeld 2 minuten (in Windows
XP Pro, SP2, met een Intel Pentium M, 1.73GHz, 1GB RAM). Dit betekent
dat, om deze query te evalueren op twee lifeline necklaces van bewegende ob-
jecten van elk 100 space-time prisms, ongeveer 100 × 100 × 2 minuten zou
duren als we alle paren van space-time prisms op intersectie zouden testen,
wat ongeveer gelijk is aan twee weken. Een minder naieve methode bestaat
erin eerst de tijdsintervallen op intersectie te testen, maar dan is de rekentijd

Bibliography 141

ongeveer gelijk aan (100 + 100) × 2 minuten, oftewel ongeveer 7 uur. Beide
tijden zijn niet aanvaardbaar vanuit een praktisch standpunt.

Een andere oplossing binnen het bereik van constraint databases, is een
formule te vinden waarin de coordinaten van de traject samples en de snel-
heidslimieten als parameters voorkomen, en die uitdrukt dat twee space-time
prisms een niet-lege doorsnede hebben. We noemen dit probleem de parame-
trische alibi query. We kunnen, althans in theorie, een kwantorvrije versie
vinden door een blok van drie existentiele kwantoren te elimineren door mid-
del van software zoals Mathematica en QEPCAD, maar na enkele dagen
runnen hebben we de berekeningen onderbroken zonder een oplossing. Het is
algemeen bekend dat die algoritmes het bijzonder moeilijk hebben met hoger
dimensionele problemen. Het voordeel van een kwantorvrije formule is dat de
alibi query dan in constante tijd kan worden beantwoord. het beslissen of twee
lifeline necklaces een niet-lege doorsnede hebben kan dan berekend worden in
een tijd die evenredig is met de som van het aantal space-time prisms in elke
necklace.

De hoofdbijdrage van Hoofdstuk 4 is een analytische oplossing voor de
alibi query in isotrope twee-dimensionele ruimte, wat een oplossing is voor een
probleem dat al sinds 2001 gesteld is. De kwantorvrije formule die we geven
bevat evenwel wortels maar we geven eveneens aan hoe we deze wortels kunnen
elimineren. De basis voor onze oplossing is een meetkundige beschrijving van
de drie manieren waarom twee space-time prisms kunnen snijden. Deze drie
gevallen kunnen dan vertaald worden in een efficiente formule waarmee we de
alibi query op twee necklaces van elk 100 space-time prisms kunnen berekenen
in minder dan een minuut. Dit geeft ons een praktische oplossing voor de alibi
query.

8.4 Space-time prisms op wegennetwerken

In Hoofdstuk 5, bestuderen we bewegende objecten en space-time prisms op
wegennetwerken. Eerder werden al aanpassingen van het space-time prism
model voor wegennetwerken voorgesteld door Miller [20, 22], alwaar ze con-
cepten zoals network time prism en potential path tree introduceerden. Het
eerste is de set van alle mogelijk bezochte segmenten in het wegennetwerk en
het tweede is een deelboom van het eerste.

We beschouwen wegennetwerken als een graaf inbedding in R2 waar de
bogen rechte lijnen zijn tussen de vertices. Alle bogen hebben een strikt po-
sitieve snelheidslimiet en gewicht, de time span, die gelijk is aan de minimale
tijd die nodig is om de boog te overbruggen gegeven de snelheidslimiet.

Een bewegend object is gegeven door een lijst van time-space punten

142 Bibliography

(ti, xi, yi) met i = 1, . . . , N , en (xi, yi) op het wegennetwerk. Het is mogelijk
dat een snelheidslimiet enkel afhangt van het object, maar in het algemeen
werken we met snelheidslimieten die van boog tot boog kunnen varieren.

Het eerste probleem dat we aanpakken is het berekenen en visualizeren
van een space-time prism tussen twee sample punten op een wegennetwerk,
gegeven de snelheidslimieten op het wegennetwerk, alsook de visualisatie van
de spatiale en temporele projecties van zo’n space-time prism. De hierboven
vermelde time span is de sleutel tot de berekening van space-time prisms op
wegennetwerken. Kortste pad-lengte op een wegennetwerk noemen we ook
road network time en is de kortst mogelijke tijd om van een punt in het we-
gennetwerk naar een ander te gaan. Als de snelheidslimieten uniforn zijn dan
is deze afstand proportioneel met de traditionele kortste pad-lengte. Onze
algoritmes zijn onder meer gebaseerd op het algoritme van Dijkstra [3]. De
complexiteit van ons algoritme is kwadratisch in een deel van het aantal ver-
tices in het wegennetwerk. De output is een polygonale representatie van het
space-time prism in ruimte en tijd. Ter illustratie hebben we deze algoritmen
in Mathematica [24] geimplementeerd.

Gebruikmakend van deze polygonale representatie hebben we ook algo-
ritmen ontwikkeld om de alibi query op wegennetwerken te berekenen. We
beginnen met een algoritme om te beslissen of twee space-time prisms van
bewegende objecten op een rechte elkaar snijden of niet. Dit levert een eerste
orde formule die kan geevalueerd worden in constante tijd. Dan gebruiken
we deze oplossing om de alibi query op een wegennetwerk te beantwoorden.
De evaluatie van deze query blijkt eenvoudig en snel op een wegennetwerk,
gegeven dat we reeds de space-time prisms hebben berekend. Ook berekenen
we de spatiale en temporele projecties van de doorsnede.

8.5 Space-time prisms en onzekere ankerpunten

Tot nu werden de sample punten, ook wel ankerpunten van space-time prisms
genoemd, als exact gemeten punten beschouwd. Meetfouten worden daarmee
genegeerd. In Hoofdstuk 6 laten we deze veronderstelling dat ankerpunten
effectief punten zijn, vallen en we veralgemenen ze naar onzekerheidsregio’s.

In praktijk zijn gemeten punten nooit exact. Ze kunnen evenwel zeer nauw-
keurig zijn als ze gemeten zijn door apparaten met een GPS ontvanger (zelfs
dan is de nauwkeurigheid tot op een meter of minder), maar ze kunnen ook
heel onnauwkeurig zijn, zoals locatiedata op basis van GSM-masten. In dit
laatste geval kan de onnauwkeurigheid zelfs enkele kilometers bedragen, en als
we de doorsnede nemen met een wegennetwerk worden deze regio’s zelfs on-
samenhangend. Een derde voorbeeld dat de tekortkomingen blootstelt komt

Bibliography 143

voor wanneer mensen worden gevraagd om een dagboek van hun activiteiten
bij te houden, bijvoorbeeld, “Ik vertrok naar huis tussen 5u en 5u30” of “Ik
was in de buurt van de supermarkt omstreeks 8u30”. In beide gevallen is er
onzekerheid in de ruimte en de tijd. Het laatste geval toont zelfs aan dat deze
regio’s niet vloeiend in de tijd hoeven verbonden te zijn. Als de supermarkt
pas open is vanaf 8u30 dan kan men daar niet geweest zijn voor 8u30.

De onzekerheidsregio’s modelleren alle bovenstaande gevallen. Dit zijn
rechthoekvormige regio’s in tijd-ruimte bovenop een wegennetwerk. Die regio’s
hoeven niet samenhangend te zijn, noch vloeiend in elkaar over te gaan. Om
verschillende scenario’s te modelleren laten we ook probabiliteitsfuncties toe
op deze regio’s.

In Hoofdstuk 6 introduceren we onzekerheidsregio’s en de omhullende space-
time prism. We definieren ook drie grootheden die we aan elk tijd-ruimte punt
toekennen, een eerste grootheid geeft de waarschijnlijkheid weer ten opzichte
van de start onzekerheidsregio’s, een tweede grootheid doet hetzelfde ten op-
zichte van de aankomst onzekerheodsregio’s en de derde grootheid combineert
de vorige twee. We geven ook nog algoritmes om de grootheden en geintrodu-
ceerde begrippen te berekenen en visualiseren.

